Skip to main content
Log in

Analyzing results of impedance spectroscopy using novel evolutionary programming techniques

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

This paper discusses the application of evolutionary programming methods to the problem of analyzing impedance spectroscopy results. The basic approach is a “direct-problem” one, i.e., to find a time constant distribution function that would create similar impedance results as the measured ones, within experimental error. Two complementary methods have been applied and are discussed here: Genetic Algorithm (GA) and Genetic Programming (GP). A GA can be applied when a known (or desired) model exists, whereas GP can be used to create new models where the only a-priori knowledge is their smoothness and their non-negativity. GP is tuned to prefer relatively non-complex models through penalization of unnecessary complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.R. Macdonald, Impedance Spectroscopy: emphasizing solid materials and systems (Wiley, New York, 1987)

    Google Scholar 

  2. B.A. Boukamp, Electrochemical impedance Spectroscopy in Solid State Ionics: recent advances Solid State Ion. 169, 56 (2004) doi:10.1016/j.ssi.2003.07.002

    Article  Google Scholar 

  3. W.A. Yager, The Distribution of Relaxation Times in Typical Dielectrics Physics 7, 434 (1936) doi:10.1063/1.1745355

    Article  Google Scholar 

  4. X. Li, Impedance Spectroscopy for Manufacturing Control of Material Physical Properties, Thesis, University of Washington (2003)

  5. R. Lantham, Algorithm Development for Electrochemical Impedance Spectroscopy Diagnostics in PEM Fuel Cells, Thesis, University of Victoria (2004)

  6. A.J. Jonscher, The Universal Dielectric response and its Physical Significance IEEE Trans. Electr. Insul. 27, 407 (1992) doi:10.1109/14.142701

    Article  Google Scholar 

  7. C.J. Dias, Determination of a distribution of relaxation frequencies based on experimental relaxation data Phys. Rev. B 53, 212 (1996) doi:10.1103/PhysRevB.53.14212

    Article  MathSciNet  Google Scholar 

  8. F. Mansfeld, H. Xiao, Y. Wang, Evaluation of localized corrosion phenomena with electrochemical impedance spectroscopy and electrochemical noise analysis Mater. Corros. 46, 3 (2004)

    Google Scholar 

  9. K.E. Jeffers, Electrochemical impedance spectroscopy for the characterization of corrosion and cathodic protection of buried pipelines, Thesis, University of Florida (1999)

  10. G. Rocchini, The corrosion-trend monitoring with the impedance technique Mater. Corros. 49, 18 (1998) doi:10.1002/(SICI)1521-4176(199801)49:1<18::AID-MACO18>3.0.CO;2-R

    Article  CAS  Google Scholar 

  11. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2002)), p. 788

    Google Scholar 

  12. S. Baltianski, Y. Tsur, Analyzing impedance spectroscopy results Rare Met. Mater. Eng. 35(Suppl. 3), 452 (2006)

    Google Scholar 

  13. J. Macutkevic, J. Banys, A. Matulis, Determination of the Distribution of the Relaxation Times from Dielectric Spectra Nonlinear Anal. Model. Contr. 9, 75 (2004)

    MATH  Google Scholar 

  14. E. Tuncer, S.M. Gubanski, On dielectric data analysis IEEE Trans Dielectr Electr Insul 8, 310 (2001)

    Article  Google Scholar 

  15. H. Schichlein, A.C. Müller, M. Voigts, A. Krügel, E. Ivers-Tiffée, Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells J. Appl. Electrochem. 32, 875 (2002) doi:10.1023/A:1020599525160

    Article  CAS  Google Scholar 

  16. M. Urquidi-Macdonald, D.D. Macdonald, Application of Kramers–Kronig Transforms in the Analysis of Electrochemical Systems J. Electrochem. Soc. 132, 2316 (1985) doi:10.1149/1.2113570

    Article  Google Scholar 

  17. H. Cao, J. Yu, L. Kang, An evolutionary approach for modeling the equivalent circuit for electrical impedance spectroscopy, in Proceedings of the 2003 Congress on Evolutionary Computation, Canbera, Australia, 1819, IEEE (2003)

  18. Gamry Instruments Inc., Equivalent Circuit Modeling Using the Gamry EIS300 Electrochemical Impedance Spectroscopy Software (Gamry Instruments Inc.,, Warminster, PA, 2003)

    Google Scholar 

  19. T.J. Van der Noot, I. Abrahams, The use of genetic algorithms in the non-linear regression of immittance data J. Electroanal. Chem. 448, 17–23 (1998) doi:10.1016/S0022-0728(97)00593-7

    Article  Google Scholar 

  20. M. Yang, X. Zhang, X. Li, X. Wu, A hybrid genetic algorithm for the fitting of models to electrochemical impedance data J. Electroanal. Chem. 519, 1–8 (2002) doi:10.1016/S0022-0728(01)00707-0

    Article  CAS  Google Scholar 

  21. H. Cao, J. Yu, L. Kang, An Evolutionary Approach for Modeling the Equivalent Circuit for Electrical Impedance Spectroscopy, Congress on Evolutionary Computation (IEEE, Canberra, 2003)

    Google Scholar 

  22. M. Orazem, P. Agarwal, L.H. Garcia-Rubio, Critical issues associated with interpretation of impedance data J. Electrochem. Chem. 378, 51 (1994) doi:10.1016/0022-0728(94)87056-X

    Article  Google Scholar 

  23. A.R. West, D.C. Sinclair, N. Hirose, Characterization of Electrical Materials, Especially Ferroelectrics, by Impedance Spectroscopy J. Electroceram. 1, 65 (1997) doi:10.1023/A:1009950415758

    Article  CAS  Google Scholar 

  24. J. Fleig, Impedance Spectroscopy on Solids: The Limits of Serial Equivalent Circuit Models J. Electroceram. 13, 637 (2004) doi:10.1007/s10832-004-5170-3

    Article  Google Scholar 

  25. P. Nordin, W. Banzhaf, R.E. Keller, F.D. Francone, Genetic Programming: An Introduction: on the Automatic Evolution of Computer Programs and Its Applications (Kaufmann, Los Altos, CA, 1998)

    MATH  Google Scholar 

  26. J.R. Koza, Genetic programming (MIT, Cambridge, 1992)

    MATH  Google Scholar 

  27. J.M. Link et al., Application of genetic programming to High Energy Physics event selection, 551, 504–527 (2005), Los Alamos National Laboratory, High Energy Physics Experiment

  28. D.E. Makarov, H. Metiu, Using Genetic Programming to solve the Schrödinger Equation J. Phys. Chem. A 104, 8540 (2000) doi:10.1021/jp000695q

    Article  CAS  Google Scholar 

  29. K. Sastry, D.D. Johnson, D.E. Goldberg, P. Bellon, Genetic Programming for Multiscale Modeling Int. J. Multiscale Comput. Eng. 2, 239 (2004) doi:10.1615/IntJMultCompEng.v2.i2.50

    Article  Google Scholar 

  30. S.J. Barrett, W.B. Langdon, Advances in the application of machine learning techniques in drug discovery, design and development, in 10th Online World Conference on Soft Computing in Industrial Applications, Springer (2005)

  31. W.B. Langdon, S.J. Barrett, Genetic programming in data mining for drug discovery Evol. Comput. Data Min. 163, 211 (2004) doi:10.1007/3-540-32358-9_10

    Article  Google Scholar 

  32. B. Grosman, Nonlinear system modeling using genetic programming, Thesis, Technion-ITT (2001)

  33. B. Grosman, D.R. Lewin, Adaptive genetic programming for steady-state process modeling, Comput. Chem. Eng. 28, 2779 (2004) doi:10.1016/j.compchemeng.2004.09.001

    Article  CAS  Google Scholar 

  34. Y. Melman, S. Baltianski, Y. Tsur, A device for measuring electrical properties of dielectric materials Instrum. Sci. Technol. 33, 279 (2005) doi:10.1081/CI-200056096

    Article  CAS  Google Scholar 

  35. R. De, L. Kronig, On the theory of dispersion of X-rays J. Opt. Soc. Am. Rev. Sci. Instrum. 12, 547 (1926)

    ADS  Google Scholar 

  36. H.A. Kramers, La diffusion de la lumi’ere par les atomes Atti Congr. Int. Fis. Como 2, 545 (1927)

    Google Scholar 

  37. A.D. Poularicas, The Transforms and Applications Handbook (IEEE, Canberra, 2000)

    Google Scholar 

  38. F.W. King, Efficient numerical approach to the evaluation of Kramers–Kronig transforms J. Opt. Soc. Am. B 19, 2427 (2002) doi:10.1364/JOSAB.19.002427

    Article  CAS  ADS  Google Scholar 

  39. H.W. Bode, Network Analysis and Feedback Amplifier Design, Network Analysis and Feedback Amplifier Design (Van Nostrand Co., New York, 1953), p. 303

    Google Scholar 

  40. M. Urquidi-Macdonald, S. Real, D.D. Macdonald, Applications of Kramers–Kronig transforms in the analysis of electrochemical impedance data-II. Transformations in the complex plane J. Electrochem. Soc. 133, 2018 (1986) doi:10.1149/1.2108332

    Article  CAS  Google Scholar 

  41. A. Sadkowski, Unusual electrochemical immittance spectra with negative resistance and their validation by Kramers–Kronig transformation Solid State Ion. 176, 1987 (2005) doi:10.1016/j.ssi.2004.08.041

    Article  CAS  Google Scholar 

  42. A.L. Smirnova, K.R. Ellwood, G.M. Crosbie, Application of Fourier-based transforms to impedance spectra of small-diameter tubular solid oxide fuel cells J. Electrochem. Soc. 148(6), A610–A615 (2001) doi:10.1149/1.1372212

    Article  CAS  Google Scholar 

  43. J. Zhang, P.J.M. Monteiro, Validation of resistivity spectra from reinforced concrete corrosion by Kramers–Kronig transformations Cement Concr. Res. 31, 603 (2001) doi:10.1016/S0008-8846(01)00451-3

    Article  CAS  Google Scholar 

  44. F. Alvarez, A. Alegria, J. Colmenero, Relationship between the time-domain Kohlrausch–Williams–Watts and frequency-domain Havriliak–Negami relaxation functions Phys. Rev. B 44, 7306 (1991) doi:10.1103/PhysRevB.44.7306

    Article  ADS  Google Scholar 

  45. D.D. Macdonald, Reflections on the history of electrochemical impedance spectroscopy Electrochim. Acta 51, 1376 (2006) doi:10.1016/j.electacta.2005.02.107

    Article  CAS  Google Scholar 

  46. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2005)

    Book  Google Scholar 

  47. S. Baltianski, Y. Tsur, Analysis of impedance spectroscopy data—finding the best system function J. Electroceram. 10, 89 (2003) doi:10.1023/A:1025639604939

    Article  Google Scholar 

  48. H. Yaseen, S. Baltianski, Y. Tsur, Effect of incorporating method of niobium on the properties of doped barium titanate ceramics J. Am. Ceram. Soc. 89, 1584 (2006) doi:10.1111/j.1551-2916.2006.00966.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Partial funding of the Technion's Fund for Promotion of Research and the I. Goldberg Fund for Electronic Research are gratefully acknowledged. S.B. would like to acknowledge the support of The Center for Absorption in Science, Israeli Ministry of Immigrant Adsorption. We would also like to thank an anonymous reviewer for very thorough reading of the manuscript and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tsur.

Appendix: Calculations of average error

Appendix: Calculations of average error

The finite frequency bandwidth of the experiment causes a major difficulty to the implementation of K–K transforms and produces an inherent inaccuracy in the calculation algorithm. Additional inaccuracy of K–K transforms is originated in numerical integration scheme. In order to determine the validity of the measured impedance data, Average Error (AE) was defined as follows:

$${\text{AE}} = 100 \cdot \frac{{\sum\limits_{i = 1}^N {\left| {Z_{{\text{meas}}}^i \left( \omega \right) - Z_{{\text{KKT}}}^i \left( \omega \right)} \right|} }}{{N \cdot Z_{{\text{meas}},\max } }}$$
(15)

where Z meas and Z KKT are the values observed experimentally and calculated by K–K transform. Z meas,max is the maximum value of the experimental relevant data set (real or imaginary) and N is the total number of measured points. Normalization of Eq. 15 by Z meas,max enables the comparison of the different data sets that can differ by orders of magnitude.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesler, A.B., Lewin, D.R., Baltianski, S. et al. Analyzing results of impedance spectroscopy using novel evolutionary programming techniques. J Electroceram 24, 245–260 (2010). https://doi.org/10.1007/s10832-009-9565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-009-9565-z

Keywords

Navigation