Skip to main content

Advertisement

Log in

Design, fabrication and finite element modeling of a new wagon wheel flextensional transducer

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Cymbal and moonie transducers exhibit greatly improved performance characteristics compared to a simple piezoelectric disk. This behavior is mainly due to the amplifying nature of the endcaps employed in these devices. Although these endcaps improve the displacement by amplifying the small lateral displacement associated with the d 31 coefficient to a large axial displacement, this mechanism generates a very high tangential stress in the caps, which leads to a reduction in the efficiency of this transformation. In this paper, we report on a new end cap design, called the wagon wheel flextensional transducer, in which some of the clamping boundary conditions are eased by removing the metal in areas of high stress concentration. In the wagon wheel design, the tangential stresses are further reduced, thereby improving the efficiency of the transformation of the lateral to axial displacement, and consequently increasing the displacement response of the devices. Structural and impedance analyses of the devices were carried out using the commercially available software codes, ABAQUS and ATILA, respectively. Results reported for finite element modeling and experimental characterization suggest that these devices exhibit improved displacement characteristics compared to cymbal devices with similar dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Dogan, K. Uchino, R.E. Newnham, ed. by C. Galassi. Piezoelectric Materials: Advances in Science, Technology and Applications (Kluwer, Norwell, 2000), pp. 357–374

    Google Scholar 

  2. R.E. Newnham, J. Zhang, R. Meyer Jr., Proc. 12th IEEE Intl. Symp. Appl. Ferro., (2001), pp. 29–32

  3. A. Dogan, J.F. Fernandez, K. Uchino, R.E. Newnham, Proc. 10th IEEE Intl. Symp. Appl. Ferro. (1996), pp. 213–216

  4. J. F. Tressler, Ph.D. Dissertation, The Pennsylvania State University (1997)

  5. J.F. Fernandez, A. Dogan, J.T. Fielding, K. Uchino, R.E. Newnham, Sens. Actuators, A, Phys. 65(1), 228–237 (1998) doi:10.1016/S0924-4247(97)01668-3

    Article  Google Scholar 

  6. A. Dogan, E. Uzgur, D.C. Markley, R.J. Meyer, A.C. Hladky-Hennion, R.E. Newnham, J. Electroceram. 13, 403–407 (2004) doi:10.1007/s10832-004-5132-9

    Article  CAS  Google Scholar 

  7. J. Tressler, J.F. Fernandez, A. Dogan, J.T. Fielding, K. Uchino, R.E. Newnham, IEEE Ultrasonics Symp. (1995), pp. 897–900

  8. A. Dogan, R.E. Newnham, U.S. Patent 5,729,077 (1998)

  9. S. Lee, R.E. Newnham, N.B. Smith, IEEE Trans. UFFC 51(2), 176–180 (2004)

    Google Scholar 

  10. Y. Ke, T. Guo, J. Li, IEEE Trans. UFFC 51(9), 1171–1177 (2004)

    Google Scholar 

  11. R. Lerch, IEEE Trans. UFFC 37(2), 233–247 (1990)

    CAS  MathSciNet  Google Scholar 

  12. A.J. Moulson, J.M. Herbert, Electroceramics (Chapman and Hall, London, 1990)

    Google Scholar 

  13. R.J. Meyer Jr., W.J. Huges, T.C. Montgomery, D.C. Markley, R.E. Newnham, J. Electroceram. 8, 163–174 (2002) doi:10.1023/A:1020512231158

    Article  Google Scholar 

  14. ATILA® 5.2.2 User’s Manual, ISEN, Lille Cedex, France (2003).

  15. PKI 552 Technical data given by the manufacturer, Piezo Kinetics Inc., Bellefonte, PA 16823

  16. A. Dogan, S. Yoshikawa, K. Uchino, R.E. Newnham, IEEE Ultrasonics Symp. (1994), pp. 935–939

  17. J. Tressler, T. Howarth, Proc. 12th IEEE Intl. Symp. Appl. Ferro. (2001), pp. 561–564

  18. J. Tressler, W. Cao, K. Uchino, R. E. Newnham, IEEE Ultrasonics Symp. (1996), 561–564

  19. J. Zhang, W.J. Hughes, P. Bouchilloux, R.J. Meyer, K. Uchino, R.E. Newnham, Ultrasonics 37, 387–393 (1999) doi:10.1016/S0041-624X(99)00021-9

    Article  Google Scholar 

  20. A. Dogan, K. Uchino, R.E. Newnham, IEEE Trans. UFFC 44(3), 597–605 (1997)

    Google Scholar 

  21. C.L. Sun, S.S. Guo, W.P. Li, Z.B. Xing, G.C. Liu, X.Z. Zhao, Sens. Actuators, A, Phys. 121, 213–220 (2005) doi:10.1016/j.sna.2005.01.023

    Article  Google Scholar 

  22. W.D. Nothwang, M.W. Cole, R.W. Schwartz, Int. Ferro. 71, 207–219 (2005) doi:10.1080/10584580590964655

    Article  CAS  Google Scholar 

  23. G. Li, E. Furman, G.H. Haertling, J. Am. Ceram. Soc. 80(6), 1382–1388 (1997).

    CAS  Google Scholar 

  24. R.W. Schwartz, Y.W. Moon, SPIE Smart Struct. Mater. Active Mater. 4333, 408–417 (2001)

    ADS  Google Scholar 

  25. X. Li, W.Y. Shih, J.S. Vartuli, D.L. Milius, I.A. Aksay, W. Shih, J. Am. Ceram. Soc. 85(4), 844–850 (2002)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. John Tyler at the UMR Rock Mechanics and Explosives Research Center for cutting the wagon wheel patterns and Dr. Saikrishna Sundararaman for his comments regarding the structural modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Narayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayanan, M., Schwartz, R.W. Design, fabrication and finite element modeling of a new wagon wheel flextensional transducer. J Electroceram 24, 205–213 (2010). https://doi.org/10.1007/s10832-008-9559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-008-9559-2

Keywords

Navigation