Skip to main content
Log in

Dynamic response of embedded Timoshenko CNTs exposed to magnetic and thermal fields subjected to moving load based on doublet mechanics

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper uses the nanomechanical theory to examine the dynamic behaviour and response of embedded zigzag and armchair carbon nanotubes (CNTs) under moving load in thermal and magnetic fields. The nanoscale size effect of CNTs is imposed using the doublet mechanics theory. The CNTs modelled as a Timoshenko beam structure with shear stress effects. The modified motion and non-classical boundary condition equations of embedded CNTs under moving load and subjected to thermal and magnetic loads are obtained using Hamilton's principle. Navier's analytical solution and Newmark's time integration methods are imposed to obtain the time domain responses of simply supported CNTs. The computational accuracy of the proposed model has been validated and proven by previously published studies for free and forced responses. In the parametric analyses, the influence of the doublet length scale parameter (DMP), armchair and zigzag structures of CNTs, moving load's velocity, magnetic field’s intensity, temperature rise, and the stiffnesses of two-parameter Pasternak foundation on dynamic responses of CNTs are considered. It is obtained that the DMP significantly affects CNTs' free and forced vibration under a moving load. The DMP increase reduces system stiffness, lowering the dimensionless frequency and increasing the dynamic amplification factor. Also, the DMP has a greater influence at higher vibration modes and beam aspect ratios. The proposed modelling is helpful for the analysis, design, and remote control of MEMS/NEMS as nano-transport systems, nanosensors, and nano-actuators manufactured from CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53:1827–1854. https://doi.org/10.1016/j.jmps.2005.02.012

    Article  MathSciNet  MATH  Google Scholar 

  2. Eltaher MA, Abdelrahman AA, Esen I (2021) Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load. Eur Phys J Plus 123:1–21. https://doi.org/10.1140/epjp/s13360-021-01682-8

    Article  Google Scholar 

  3. Shokrieh MM, Rafiee R (2010) Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites. Compos Struct 92:2415–2420. https://doi.org/10.1016/j.compstruct.2010.02.018

    Article  Google Scholar 

  4. Hossain MZ, Ahmed T, Silverman B et al (2018) Anisotropic toughness and strength in graphene and its atomistic origin. J Mech Phys Solids. https://doi.org/10.1016/j.jmps.2017.09.012

    Article  Google Scholar 

  5. Najafishad S, Manesh HD, Zebarjad SM et al (2020) Production and investigation of mechanical properties and electrical resistivity of cement-matrix nanocomposites with graphene oxide and carbon nanotube reinforcements. Arch Civ Mech Eng 20:57. https://doi.org/10.1007/s43452-020-00059-5

    Article  Google Scholar 

  6. Xia X, Du Z, Zhang J et al (2022) Modeling the impact of glass transition on the frequency-dependent complex conductivity of CNT-polymer nanocomposites. Mech Mater. https://doi.org/10.1016/j.mechmat.2021.104195

    Article  Google Scholar 

  7. Nakarmi S, Unnikrishnan VU (2022) Understanding size and strain induced variabilities in thermal conductivity of carbon nanotubes: a molecular dynamics study. Mech Adv Mater Struct 29:1977–1985. https://doi.org/10.1080/15376494.2020.1846232

    Article  Google Scholar 

  8. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  9. Ouakad HM, Valipour A, Kamil Żur K et al (2020) On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity. Mech Mater. https://doi.org/10.1016/j.mechmat.2020.103532

    Article  Google Scholar 

  10. Das S, Roy D (2019) A constitutive model for block-copolymers based on effective temperature. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2019.105082

    Article  Google Scholar 

  11. Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323. https://doi.org/10.1016/j.commatsci.2006.06.011

    Article  Google Scholar 

  12. Zhao P, Shi G (2011) Study of poisson ratios of single-walled carbon nanotubes based on an improved molecular structural mechanics model. Comput Mater Contin 22:147–168. https://doi.org/10.3970/cmc.2011.022.147

    Article  Google Scholar 

  13. Griebel M, Hamaekers J (2004) Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput Methods Appl Mech Eng 193:1773–1788. https://doi.org/10.1016/j.cma.2003.12.025

    Article  MathSciNet  MATH  Google Scholar 

  14. Cagin T, Jaramillo-Botero A, Gao G, Goddard WA (1998) Molecular mechanics and molecular dynamics analysis of Drexler-Merkle gears and neon pump. Nanotechnology 9:143–152. https://doi.org/10.1088/0957-4484/9/3/002

    Article  Google Scholar 

  15. Ghorbani K, Rajabpour A, Ghadiri M (2021) Determination of carbon nanotubes size-dependent parameters: molecular dynamics simulation and nonlocal strain gradient continuum shell model. Mech Based Des Struct Mach 49:103–120. https://doi.org/10.1080/15397734.2019.1671863

    Article  Google Scholar 

  16. Scott JF, Schilling A, Rowley SE, Gregg JM (2015) Some current problems in perovskite nano-ferroelectrics and multiferroics: Kinetically-limited systems of finite lateral size. Sci Technol Adv Mater 16:1–9. https://doi.org/10.1088/1468-6996/16/3/036001

    Article  Google Scholar 

  17. Jiang JW, Wang JS, Li B (2009) Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.80.205429

    Article  Google Scholar 

  18. Gao G, Çagin T, Goddard WA (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9:184–191. https://doi.org/10.1088/0957-4484/9/3/007

    Article  Google Scholar 

  19. Froudakis GE (2001) Hydrogen Interaction with Single-Walled Carbon Nanotubes: A Combined Quantum-Mechanics/Molecular-Mechanics Study. Nano Lett 1:179–182. https://doi.org/10.1021/nl015504p

    Article  Google Scholar 

  20. Eringen AC, Suhubi ESS (1964) Nonlinear theory of simple micro-elastic solids—I. Int J Eng Sci 2:189–203. https://doi.org/10.1016/0020-7225(64)90004-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys. https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  22. Zhang YQ, Liu GR, Xie XY (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.71.195404

    Article  Google Scholar 

  23. Kadıoğlu H, Yaylı MÖ (2017) Buckling analysis of non-local timoshenko beams by using fourier series. Int J Eng Appl Sci 9:89–99

    Google Scholar 

  24. Lü L, Hu YJ, Wang XL (2015) Forced vibration of two coupled carbon nanotubes conveying lagged moving nano-particles. Phys E Low-Dimensional Syst Nanostructures 68:72–80. https://doi.org/10.1016/j.physe.2014.12.021

    Article  Google Scholar 

  25. Hamed MA, Eltaher MA, Sadoun AM, Almitani KH (2016) Free vibration of symmetric and sigmoid functionally graded nanobeams. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-016-0324-0

    Article  Google Scholar 

  26. Esen I, Abdelrahman AA, Eltaher MA (2020) Dynamics analysis of timoshenko perforated microbeams under moving loads. Eng Comput. https://doi.org/10.1007/s00366-020-01212-7

    Article  Google Scholar 

  27. Glabisz W, Jarczewska K, Hołubowski R (2019) Stability of Timoshenko beams with frequency and initial stress dependent nonlocal parameters. Arch Civ Mech Eng 19:1116–1126. https://doi.org/10.1016/j.acme.2019.06.003

    Article  Google Scholar 

  28. Ghorbanpour-Arani AH, Rastgoo A, Sharafi MM et al (2016) Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems. Meccanica 51:25–40. https://doi.org/10.1007/s11012-014-9991-0

    Article  MathSciNet  MATH  Google Scholar 

  29. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–414. https://doi.org/10.1007/BF00253945

    Article  MathSciNet  MATH  Google Scholar 

  30. Kong S, Zhou S, Nie Z, Wang K (2008) The size-dependent natural frequency of Bernoulli-Euler micro-beams. Int J Eng Sci. https://doi.org/10.1016/j.ijengsci.2007.10.002

    Article  MATH  Google Scholar 

  31. Ma HMM, Gao X-LL, Reddy JNN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56:3379–3391. https://doi.org/10.1016/j.jmps.2008.09.007

    Article  MathSciNet  MATH  Google Scholar 

  32. Park SK, Gao X-L (2008) Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift für Angew Math und Phys 59:904–917. https://doi.org/10.1007/s00033-006-6073-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Eltaher MA, Fouda N, El-midany T, Sadoun AM (2018) Modified porosity model in analysis of functionally graded porous nanobeams. J Brazilian Soc Mech Sci Eng 40:1–10. https://doi.org/10.1007/s40430-018-1065-0

    Article  Google Scholar 

  34. Akbarzadeh Khorshidi M, Shariati M (2016) Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory. J Brazilian Soc Mech Sci Eng 38:2607–2619. https://doi.org/10.1007/s40430-015-0388-3

    Article  Google Scholar 

  35. Mollamahmutoğlu Ç, Mercan A, Levent A (2022) A comprehensive mechanical response and dynamic stability analysis of elastically restrained bi-directional functionally graded porous microbeams in the thermal environment via mixed finite elements. J Brazilian Soc Mech Sci Eng 44:333. https://doi.org/10.1007/s40430-022-03616-6

    Article  Google Scholar 

  36. Ghorbanpour-Arani AH, Abdollahian M, Ghorbanpour Arani A (2020) Nonlinear dynamic analysis of temperature-dependent functionally graded magnetostrictive sandwich nanobeams using different beam theories. J Brazilian Soc Mech Sci Eng 42:314. https://doi.org/10.1007/s40430-020-02400-8

    Article  Google Scholar 

  37. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct. https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  38. Kong S, Zhou S, Nie Z, Wang K (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci. https://doi.org/10.1016/j.ijengsci.2008.08.008

    Article  MathSciNet  MATH  Google Scholar 

  39. Lim CWW, Zhang G, Reddy JNN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313. https://doi.org/10.1016/j.jmps.2015.02.001

    Article  MathSciNet  MATH  Google Scholar 

  40. Akgöz B, Civalek Ö (2011) Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int J Eng Sci 49:1268–1280. https://doi.org/10.1016/j.ijengsci.2010.12.009

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhao X, Zheng S, Chen D (2023) Size-dependent nonlinear analysis of piezo-electrostatically actuated porous functionally graded nanobeams incorporating flexoelectricity. J Brazilian Soc Mech Sci Eng 45:97. https://doi.org/10.1007/s40430-022-03983-0

    Article  Google Scholar 

  42. Ghorbanpour Arani A, Haghparast E, Ghorbanpour Arani AH (2016) Size-dependent vibration of double-bonded carbon nanotube-reinforced composite microtubes conveying fluid under longitudinal magnetic field. Polym Compos 37:1375–1383. https://doi.org/10.1002/pc.23306

    Article  Google Scholar 

  43. She GL, Yuan FG, Karami B et al (2019) On nonlinear bending behavior of FG porous curved nanotubes. Int J Eng Sci 135:58–74. https://doi.org/10.1016/j.ijengsci.2018.11.005

    Article  MathSciNet  MATH  Google Scholar 

  44. Karami B, Janghorban M, Rabczuk T (2020) Forced vibration analysis of functionally graded anisotropic nanoplates resting on Winkler/Pasternak-foundation. Comput Mater Contin 62:607–629. https://doi.org/10.32604/cmc.2020.08032

  45. Abdelrahman AA, Esen I, Özarpa C, Eltaher MA (2021) Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory. Appl Math Model 96:215–235. https://doi.org/10.1016/j.apm.2021.03.008

    Article  MathSciNet  MATH  Google Scholar 

  46. Esen I, Daikh AA, Eltaher MA (2021) Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load. Eur Phys J Plus 136:458. https://doi.org/10.1140/epjp/s13360-021-01419-7

    Article  Google Scholar 

  47. Bai Y, Suhatril M, Cao Y et al (2022) Hygro–thermo–magnetically induced vibration of nanobeams with simultaneous axial and spinning motions based on nonlocal strain gradient theory. Eng Comput 38:2509–2526. https://doi.org/10.1007/s00366-020-01218-1

    Article  Google Scholar 

  48. Wu Q, Chen H, Gao W (2020) Nonlocal strain gradient forced vibrations of FG-GPLRC nanocomposite microbeams. Eng Comput 36:1739–1750. https://doi.org/10.1007/s00366-019-00794-1

    Article  Google Scholar 

  49. Panahi R, Asghari M, Borjalilou V (2023) Nonlinear forced vibration analysis of micro-rotating shaft–disk systems through a formulation based on the nonlocal strain gradient theory. Arch Civ Mech Eng 23:85. https://doi.org/10.1007/s43452-023-00617-7

    Article  Google Scholar 

  50. Sarparast H, Alibeigloo A, Borjalilou V, Koochakianfard O (2022) Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects. Arch Civ Mech Eng 22:172. https://doi.org/10.1007/s43452-022-00489-3

    Article  Google Scholar 

  51. Uzun B, Civalek Ö, Yaylı MÖ (2022) Nonlocal strain gradient approach for axial vibration analysis of arbitrary restrained nanorod. J Brazilian Soc Mech Sci Eng 44:532. https://doi.org/10.1007/s40430-022-03823-1

    Article  Google Scholar 

  52. Gul U, Aydogdu M (2022) Longitudinal vibration of Bishop nanorods model based on nonlocal strain gradient theory. J Brazilian Soc Mech Sci Eng 44:377. https://doi.org/10.1007/s40430-022-03635-3

    Article  Google Scholar 

  53. Agwa MA, Eltaher MA (2016) Vibration of a carbyne nanomechanical mass sensor with surface effect. Appl Phys A Mater Sci Process 122:1–8. https://doi.org/10.1007/s00339-016-9934-9

    Article  Google Scholar 

  54. Sedighi HM, Keivani M, Abadyan M (2015) Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect. Compos Part B Eng 83:117–133. https://doi.org/10.1016/j.compositesb.2015.08.029

    Article  Google Scholar 

  55. Gurtin ME, Ian Murdoch A (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57:291–323. https://doi.org/10.1007/BF00261375

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang L, Ou Z (2022) Modeling and analysis of the static bending of piezoelectric nanowires with the consideration of surface effects. J Brazilian Soc Mech Sci Eng 44:329. https://doi.org/10.1007/s40430-022-03639-z

    Article  Google Scholar 

  57. Wu Y, Zhang X, Leung AYT, Zhong W (2006) An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes. Thin-Walled Struct 44:667–676. https://doi.org/10.1016/j.tws.2006.05.003

    Article  Google Scholar 

  58. Pirmoradian M, Torkan E, Toghraie D (2020) Study on size-dependent vibration and stability of DWCNTs subjected to moving nanoparticles and embedded on two-parameter foundations. Mech Mater 142:. https://doi.org/10.1016/j.mechmat.2019.103279

  59. Abdelrahman AA, Esen I, Daikh AA, Eltaher MA (2021) Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load. Mech Based Des Struct Mach 1–24. https://doi.org/10.1080/15397734.2021.1999263

  60. Huang K, Qu B, Xu W, Yao J (2022) Nonlocal Euler-Bernoulli beam theories with material nonlinearity and their application to single-walled carbon nanotubes. Nonlinear Dyn 109:1423–1439. https://doi.org/10.1007/s11071-022-07615-z

    Article  Google Scholar 

  61. Thongchom C, Roodgar Saffari P, Roudgar Saffari P, et al (2022) Dynamic response of fluid-conveying hybrid smart carbon nanotubes considering slip boundary conditions under a moving nanoparticle. Mech Adv Mater Struct 1–14. https://doi.org/10.1080/15376494.2022.2051101

  62. Ghorbanpour-Arani AH, Rastgoo A, Hafizi Bidgoli A et al (2017) Wave propagation of coupled double-DWBNNTs conveying fluid-systems using different nonlocal surface piezoelasticity theories. Mech Adv Mater Struct 24:1159–1179. https://doi.org/10.1080/15376494.2016.1227488

    Article  Google Scholar 

  63. Gul U, Aydogdu M (2018) Structural modelling of nanorods and nanobeams using doublet mechanics theory. Int J Mech Mater Des 14:195–212. https://doi.org/10.1007/s10999-017-9371-8

    Article  Google Scholar 

  64. Granik VT, Ferrari M (1993) Microstructural mechanics of granular media. Mech Mater 15:301–322. https://doi.org/10.1016/0167-6636(93)90005-C

    Article  Google Scholar 

  65. Gul U, Aydogdu M, Gaygusuzoglu G (2017) Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics. Compos Struct 160:1268–1278. https://doi.org/10.1016/j.compstruct.2016.11.023

    Article  Google Scholar 

  66. Fatahi-Vajari A, Imam A (2016) Torsional vibration of single-walled carbon nanotubes using doublet mechanics. Zeitschrift fur Angew Math und Phys 67:. https://doi.org/10.1007/s00033-016-0675-6

  67. Fatahi-Vajari A, Imam A (2016) Axial vibration of single-walled carbon nanotubes using doublet mechanics. Indian J Phys 90:447–455. https://doi.org/10.1007/s12648-015-0775-8

    Article  MATH  Google Scholar 

  68. Ebrahimian MR, Imam A, Najafi M (2018) Doublet mechanical analysis of bending of Euler-Bernoulli and Timoshenko nanobeams. ZAMM - J Appl Math Mech / Zeitschrift für Angew Math und Mech 98:1642–1665. https://doi.org/10.1002/zamm.201700365

    Article  MathSciNet  Google Scholar 

  69. Civalek Ö, Uzun B, Yaylı MÖ (2022) An eigenvalue solution for torsional vibrations of restrained porous nanorods using doublet mechanics theory. J Brazilian Soc Mech Sci Eng 44:116. https://doi.org/10.1007/s40430-022-03415-z

    Article  Google Scholar 

  70. Gul U, Aydogdu M (2021) A micro/nano-scale Timoshenko-Ehrenfest beam model for bending, buckling and vibration analyses based on doublet mechanics theory. Eur J Mech A/Solids 86:104199. https://doi.org/10.1016/j.euromechsol.2020.104199

    Article  MathSciNet  MATH  Google Scholar 

  71. Gul U, Aydogdu M (2021) Transverse wave propagation analysis in single-walled and double-walled carbon nanotubes via higher-order doublet mechanics theory. Waves in Random and Complex Media. https://doi.org/10.1080/17455030.2021.1959085

    Article  Google Scholar 

  72. Yayli MÖ, Asa E (2020) Longitudinal vibration of carbon nanotubes with elastically restrained ends using doublet mechanics. Microsyst Technol 26:499–508. https://doi.org/10.1007/s00542-019-04512-1

    Article  Google Scholar 

  73. Mohamed A. Eltaher NM and SAM, Eltaher MA, Mohamed N, Mohamed SA (2020) Nonlinear buckling and free vibration of curved CNTs by doublet mechanics. Smart Struct Syst 26:213–226. https://doi.org/10.12989/sss.2020.26.2.213

  74. Karamanli A, Vo TP (2021) Free vibration of axially loaded zigzag and armchair nanobeams using doublet mechanics. Mech Based Des Struct Mach 1–26. https://doi.org/10.1080/15397734.2021.2013878

  75. Arda M, Aydogdu M (2022) Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass. Mech Based Des Struct Mach 50:841–857. https://doi.org/10.1080/15397734.2020.1728548

    Article  Google Scholar 

  76. Gul U, Aydogdu M (2021) Buckling analysis of functionally graded beams with periodic nanostructures using doublet mechanics theory. J Brazilian Soc Mech Sci Eng 43:1–8. https://doi.org/10.1007/s40430-021-02972-z

    Article  Google Scholar 

  77. Lin SS, Shen YC (2005) Stress fields of a half-plane caused by moving loads-resolved using doublet mechanics. Soil Dyn Earthq Eng 25:893–904. https://doi.org/10.1016/j.soildyn.2005.08.001

    Article  Google Scholar 

  78. Aydogdu M, Gul U (2018) Buckling analysis of double nanofibers embeded in an elastic medium using doublet mechanics theory. Compos Struct 202:355–363. https://doi.org/10.1016/j.compstruct.2018.02.015

    Article  Google Scholar 

  79. Sadd MH, Dai Q (2005) A comparison of micro-mechanical modeling of asphalt materials using finite elements and doublet mechanics. Mech Mater 37:641–662. https://doi.org/10.1016/j.mechmat.2004.06.004

    Article  Google Scholar 

  80. Eltaher MA, Mohamed N, Pradhan SC (2020) Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics. Appl Math Comput 382:125311. https://doi.org/10.1016/j.amc.2020.125311

    Article  MathSciNet  MATH  Google Scholar 

  81. Kojic M, Vlastelica I, Decuzzi P et al (2011) A finite element formulation for the doublet mechanics modeling of microstructural materials. Comput Methods Appl Mech Eng 200:1446–1454. https://doi.org/10.1016/j.cma.2011.01.001

    Article  MathSciNet  MATH  Google Scholar 

  82. Karamanli A (2021) Structural behaviours of zigzag and armchair nanobeams using finite element doublet mechanics. Eur J Mech - A/Solids 89:104287. https://doi.org/10.1016/j.euromechsol.2021.104287

    Article  MathSciNet  MATH  Google Scholar 

  83. Gul U, Aydogdu M (2020) Vibration of layered nanobeams with periodic nanostructures. Mech Based Des Struct Mach 0:1–22. https://doi.org/10.1080/15397734.2020.1848592

  84. Fryba L (1999) Vibration Solids and Structures Under Moving Loads. Thomas Telford House, London

    Book  MATH  Google Scholar 

  85. Esen I (2019) Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. Int J Mech Sci 153–154:21–35. https://doi.org/10.1016/j.ijmecsci.2019.01.033

    Article  Google Scholar 

  86. Esen I (2013) A new finite element for transverse vibration of rectangular thin plates under a moving mass. Finite Elem Anal Des 66:26–35. https://doi.org/10.1016/j.finel.2012.11.005

    Article  MathSciNet  MATH  Google Scholar 

  87. Wu J-J (2008) Transverse and longitudinal vibrations of a frame structure due to a moving trolley and the hoisted object using moving finite element. Int J Mech Sci 50:613–625. https://doi.org/10.1016/j.ijmecsci.2008.02.001

    Article  MATH  Google Scholar 

  88. Chen S, Zhang Q, Liu H (2022) Dynamic response of double-FG porous beam system subjected to moving load. Eng Comput 38:2309–2328. https://doi.org/10.1007/s00366-021-01376-w

    Article  Google Scholar 

  89. Nguyen DK, Vu ANT, Pham VN, Truong TT (2022) Vibration of a three-phase bidirectional functionally graded sandwich beam carrying a moving mass using an enriched beam element. Eng Comput 38:4629–4650. https://doi.org/10.1007/s00366-021-01496-3

    Article  Google Scholar 

  90. Esen I (2020) Dynamics of size-dependant Timoshenko micro beams subjected to moving loads. Int J Mech Sci 175:105501. https://doi.org/10.1016/j.ijmecsci.2020.105501

    Article  Google Scholar 

  91. Esen I, Abdelrahman AA, Eltaher MA (2021) On vibration of sigmoid / symmetric functionally graded nonlocal strain gradient nanobeams under moving load. Int J Mech Mater Des 9:. https://doi.org/10.1007/s10999-021-09555-9

  92. Esen I (2020) Response of a micro-capillary system exposed to a moving mass in magnetic field using nonlocal strain gradient theory. Int J Mech Sci 188:105937. https://doi.org/10.1016/j.ijmecsci.2020.105937

    Article  Google Scholar 

  93. Pourseifi M, Rahmani O, Hoseini SAH (2015) Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories. Meccanica 50:1351–1369. https://doi.org/10.1007/s11012-014-0096-6

    Article  MathSciNet  MATH  Google Scholar 

  94. Özarpa C, Esen I (2020) Modelling the dynamics of a nanocapillary system with a moving mass using the non-local strain gradient theory. Math Methods Appl Sci mma.6812. https://doi.org/10.1002/mma.6812

  95. Aydogdu M (2009) A new shear deformation theory for laminated composite plates. Compos Struct 89:94–101. https://doi.org/10.1016/j.compstruct.2008.07.008

    Article  Google Scholar 

  96. Arda M, Aydogdu M (2021) Dynamics of nonlocal strain gradient nanobeams with longitudinal magnetic field. Math Methods Appl Sci 1–18. https://doi.org/10.1002/mma.7268

  97. Kraus J (1992) Electromagnetics. McGraw-Hill

    MATH  Google Scholar 

  98. Arani AG, Jalaei MH (2017) Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory. Phys B Condens Matter 506:94–104. https://doi.org/10.1016/j.physb.2016.11.004

    Article  Google Scholar 

  99. Babaei A, Arabghahestani M (2021) Free Vibration Analysis of Rotating Beams Based on the Modified Couple Stress Theory and Coupled Displacement Field. Appl Mech 2:226–238. https://doi.org/10.3390/applmech2020014

    Article  Google Scholar 

  100. Ghorbanpour Arani A, BabaAkbar-Zarei H, Pourmousa P, Eskandari M (2018) Investigation of free vibration response of smart sandwich micro-beam on Winkler-Pasternak substrate exposed to multi physical fields. Microsyst Technol 24:3045–3060. https://doi.org/10.1007/s00542-017-3681-5

    Article  Google Scholar 

  101. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307. https://doi.org/10.1016/j.ijengsci.2007.04.004

    Article  MATH  Google Scholar 

  102. Thai HT, Vo TP (2012) A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int J Eng Sci 54:58–66. https://doi.org/10.1016/j.ijengsci.2012.01.009

    Article  MathSciNet  MATH  Google Scholar 

  103. Thai HT, Vo TP (2012) Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. Int J Mech Sci 62:57–66. https://doi.org/10.1016/j.ijmecsci.2012.05.014

    Article  Google Scholar 

  104. Lou P, Dai GL, Zeng QY (2007) Dynamic analysis of a Timoshenko beam subjected to moving concentrated forces using the finite element method. Shock Vib 14:459–468. https://doi.org/10.1155/2007/460206

    Article  Google Scholar 

  105. Lee HP (1996) The dynamic response of a Timoshenko beam subjected to a moving mass. J. Sound Vib. 198

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramazan Özmen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Technical Editor: Aurelio Araujo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özmen, R., Esen, I. Dynamic response of embedded Timoshenko CNTs exposed to magnetic and thermal fields subjected to moving load based on doublet mechanics. J Braz. Soc. Mech. Sci. Eng. 45, 590 (2023). https://doi.org/10.1007/s40430-023-04506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04506-1

Keywords

Navigation