Skip to main content

Advertisement

Log in

Interface mediated transport properties in n-type SrTiO3 : Induced dipole alignment at oxide grain boundaries

  • 1. Informatics: Dielectrics, Ferroelectrics, and Piezoelectrics
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Low temperature potentiometry and capacitance measurements based on noncontact atomic force microscopy were used to quantify local properties due to grain boundaries at a 0.05 wt.% Nb-doped SrTiO3 [001] surface. Local I-V curves were constructed by combining potential steps and transport currents measured at individual grain boundaries (GBs) under different lateral biases. The GBs exhibit a positive temperature coefficient of resistivity (PTCR) effect. A comparison of transport properties and calculations suggest that SrTiO3 grain boundaries undergo a non-polar to polar state phase transition induced by the large electric field associated with the boundary charge. This is supported by the temperature dependence of the barrier height and the boundary charge obtained by numerical simulation of I-V curves using a double Schottky barrier model. The built-in potential associated with the boundary was directly imaged with frequency-modulated Kelvin probe force microscopy at different temperatures and the results support the previous conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Levinson (ed) Electronic Ceramics: Properties, Devices and Applications, (Marcel Dekker Inc., New York, 1988).

    Google Scholar 

  2. M.M. McGibbon, N.D. Browning, M.F. Chisholm, A.J. McGibbon, S.J. Pennycook, V. Ravikumar, and V.P. Dravid, Science, 266, 102 (1994).

    Article  CAS  Google Scholar 

  3. M. Kim, G. Duscher, N.D. Browning, K. Sohlberg, S.T. Pantelides, and S.J. Pennycook, Phys. Rev. Lett., 86, 4056 (2001)

    Article  CAS  Google Scholar 

  4. Z. Zhang, W. Sigle, W. Kurtz, and M. Rühle, Phys. Rev., B 66, 214112 (2002).

    Google Scholar 

  5. J. Petzelt, T. Ostapchuk, I. Gregora, et al., Phys. Rev., B 64, 184111 (2001).

    Google Scholar 

  6. D.A. Bonnell and S.V. Kalinin, Z. Metallkd., 94, 188 (2003).

    CAS  Google Scholar 

  7. R. Shao, J. Vavro, and D.A. Bonnell, Appl. Phys. Lett., 85, 561 (2004).

    Article  CAS  Google Scholar 

  8. R. Shao, M.F. Chisholm, G. Duscher, and D.A. Bonnell, Phys. Rev. Lett., 95, 197601 (2005).

    Article  Google Scholar 

  9. B.D. Huey and D.A. Bonnell, Solid State Ionics, 131, 51 (2000).

    Article  CAS  Google Scholar 

  10. S.V. Kalinin and D.A. Bonnell, Phys. Rev., B 62, 10419 (2000).

    Google Scholar 

  11. S.V. Kalinin and D.A. Bonnell, Nano Lett., 4, 555 (2004).

    Article  CAS  Google Scholar 

  12. G.E. Pike and C.H. Seager, J. Appl. Phys., 50, 3414 (1979).

    Article  CAS  Google Scholar 

  13. K.A. Müller and H. Burkard, Phys. Rev., B 19, 3593 (1979).

    Google Scholar 

  14. H.-M. Christen, J. Mannhart, E.J. Williams, and C. Gerber, Phys. Rev., B 49, 12095 (1994).

    Google Scholar 

  15. H.-CH. Li, W. Si, A.D. West, and X.X. Xi, Appl. Phys. Lett., 73, 464 (1998).

    Article  CAS  Google Scholar 

  16. S. Kitamura and M. Iwatsuki, Appl. Phys. Lett., 72, 3154 (1998).

    Article  CAS  Google Scholar 

  17. R. Shao and D.A. Bonnell, Appl. Phys. Lett., 85, 4968 (2004).

    Article  CAS  Google Scholar 

  18. S.V. Kalinin and D.A. Bonnell, J. Appl. Phys., 91, 832 (2002).

    Article  CAS  Google Scholar 

  19. H.A. Sauer and J.R. Fischer, J. Am. Ceram. Soc., 43, 297 (1960).

    Article  CAS  Google Scholar 

  20. W.Heywang, Solid State Electron., 3, 51(1961).

    Article  CAS  Google Scholar 

  21. G.H. Jonker, Solid State Electron., 7, 895(1964).

    Article  CAS  Google Scholar 

  22. J. Hemberger, P. Lunkenheimer, R. Viana, R. Böhmer, and A. Loidl, Phys Rev., B 52, 13159 (1995).

    Google Scholar 

  23. J.G. Simmons, J. Appl. Phys. 34, 1793 (1963).

    Article  Google Scholar 

  24. H. Uwe and T. Sakudo, Phys. Rev., B 13, 271 (1976).

    Google Scholar 

  25. O. Tikhomirov, H. Jiang, and J. Levy, Phys. Rev. Lett., 89, 147601(2002); J.H. Haeni, P. Irvin, W. Chang, et al., Nature, 430, 758 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn A. Bonnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, R., Bonnell, D.A. Interface mediated transport properties in n-type SrTiO3 : Induced dipole alignment at oxide grain boundaries. J Electroceram 17, 211–219 (2006). https://doi.org/10.1007/s10832-006-7537-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-7537-0

Keywords

Navigation