Skip to main content
Log in

Active intrinsic conductances in recurrent networks allow for long-lasting transients and sustained activity with realistic firing rates as well as robust plasticity

  • Original Article
  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Recurrent neural networks of spiking neurons can exhibit long lasting and even persistent activity. Such networks are often not robust and exhibit spike and firing rate statistics that are inconsistent with experimental observations. In order to overcome this problem most previous models had to assume that recurrent connections are dominated by slower NMDA type excitatory receptors. Usually, the single neurons within these networks are very simple leaky integrate and fire neurons or other low dimensional model neurons. However real neurons are much more complex, and exhibit a plethora of active conductances which are recruited both at the sub and supra threshold regimes. Here we show that by including a small number of additional active conductances we can produce recurrent networks that are both more robust and exhibit firing-rate statistics that are more consistent with experimental results. We show that this holds both for bi-stable recurrent networks, which are thought to underlie working memory and for slowly decaying networks which might underlie the estimation of interval timing. We also show that by including these conductances, such networks can be trained to using a simple learning rule to predict temporal intervals that are an order of magnitude larger than those that can be trained in networks of leaky integrate and fire neurons

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

NA.

Code availability

Code is available on ModelDB. http://modeldb.yale.edu/267145

References

  • Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X. J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10, 910–923.

    Article  CAS  Google Scholar 

  • Egorov, A. V., Hamam, B. N., Fransén, E., Hasselmo, M. E., & Alonso, A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420, 173–178.

    Article  CAS  Google Scholar 

  • Fransén, E., Tahvildari, B., Egorov, A. V., Hasselmo, M. E., & Alonso, A. A. (2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer V neurons. Neuron, 49, 735–746.

    Article  Google Scholar 

  • Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173, 652–654.

    Article  CAS  Google Scholar 

  • Gavornik, J. P., & Shouval, H. Z. (2011). A network of spiking neurons that can represent interval timing: Mean field analysis. Journal of Computational Neuroscience, 30, 501–513.

    Article  Google Scholar 

  • Gavornik, J. P., Shuler, M. G. H., Loewenstein, Y., Bear, M. F., & Shouval, H. Z. (2009). Learning reward timing in cortex through reward dependent expression of synaptic plasticity. PNAS, 106, 6826–6831.

    Article  CAS  Google Scholar 

  • Goldman, M. S., Levine, J. H., Major, G., Tank, D. W., & Seung, H. S. (2003). Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cerebral Cortex, 13, 1185–1195.

    Article  Google Scholar 

  • Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14, 477–485.

    Article  CAS  Google Scholar 

  • Huertas, M. A., Hussain Shuler, M. G., & Shouval, H. Z. (2015). A Simple network architecture accounts for diverse reward time responses in primary visual cortex. Journal of Neuroscience, 35, 12659–12672.

    Article  CAS  Google Scholar 

  • Jin, D. Z., Ramazanoğlu, F. M., & Seung, H. S. (2007). Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC. Journal of Computational Neuroscience, 23, 283.

    Article  Google Scholar 

  • Koulakov, A. A., Raghavachari, S., Kepecs, A., & Lisman, J. E. (2002). Model for a robust neural integrator. Nature Neuroscience, 5, 775–782.

    Article  CAS  Google Scholar 

  • Lacinova, L. (2005). Voltage-dependent calcium channels. General Physiology and Biophysics, 24(1), 1–78.

    CAS  PubMed  Google Scholar 

  • Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z., & Golowasch, J. (1996). Memory from the dynamics of intrinsic membrane currents. PNAS, 93, 13481–13486.

    Article  CAS  Google Scholar 

  • Namboodiri, V. M. K., Huertas, M. A., Monk, K. J., Shouval, H. Z., & Hussain Shuler, M. G. (2015). Visually cued action timing in the primary visual cortex. Neuron, 86, 319–330.

    Article  CAS  Google Scholar 

  • O’Malley, J. J., Seibt, F., Chin, J., & Beierlein, M. (2020). TRPM4 conductances in thalamic reticular nucleus neurons generate persistent firing during slow Oscillations. Journal of Neuroscience, 40, 4813–4823.

    Article  Google Scholar 

  • Rahman, J., & Berger, T. (2011). Persistent activity in layer 5 pyramidal neurons following cholinergic activation of mouse primary cortices. European Journal of Neuroscience, 34, 22–30.

    Article  Google Scholar 

  • Renart, A., Brunel, N., & Wang, X. J. (2004). Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks. Computational Neuroscience, 14, 431–490.

    Google Scholar 

  • Renart, A., Moreno-Bote, R., Wang, X. J., & Parga, N. (2006). Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural Computation, 19, 1–46.

    Article  Google Scholar 

  • Shouval, H. Z., & Gavornik, J. P. (2011). A single spiking neuron that can represent interval timing: Analysis, plasticity and multi-stability. Journal of Computational Neuroscience, 30, 489–499.

    Article  Google Scholar 

  • Shuler, M. G., & Bear, M. F. (2006). Reward timing in the primary visual cortex. Science, 311, 1606–1609.

    Article  CAS  Google Scholar 

  • Tegnér, J., Compte, A., & Wang, X. J. (2002). The dynamical stability of reverberatory neural circuits. Biological Cybernetics, 87, 471–481.

    Article  Google Scholar 

  • Volman, V., Gerkin, R. C., Lau, P. M., Ben-Jacob, E., & Bi, G. Q. (2007). Calcium and synaptic dynamics underlying reverberatory activity in neuronal networks. Physical Biology, 4, 91.

    Article  CAS  Google Scholar 

  • Wang, X. J. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. Journal of Neuroscience, 19, 9587–9603.

    Article  CAS  Google Scholar 

  • Wang, X. J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36, 955–968.

    Article  CAS  Google Scholar 

  • Wang, M., Yang, Y., Wang, C. J., Gamo, N. J., Jin, L. E., Mazer, J. A., Morrison, J. H., Wang, X. J., & Arnsten, A. F. T. (2013). NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron, 77, 736–749.

    Article  CAS  Google Scholar 

  • Wimmer, K., Compte, A., Roxin, A., Peixoto, D., Renart, A., & De La Rocha, J. (2015). Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nature Communications, 6, 1–13.

    Google Scholar 

  • Winograd, M., Destexhe, A., & Sanchez-Vives, M. V. (2008). Hyperpolarization-activated graded persistent activity in the prefrontal cortex. Proceedings of the National Academy of Sciences, 105, 7298–7303.

    Article  CAS  Google Scholar 

Download references

Funding

NIH, R01 EB022891; ONR, N00014-16-1-2327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harel Z. Shouval.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Action Editor: Albert Compte

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoy, T., Shouval, H.Z. Active intrinsic conductances in recurrent networks allow for long-lasting transients and sustained activity with realistic firing rates as well as robust plasticity. J Comput Neurosci 50, 121–132 (2022). https://doi.org/10.1007/s10827-021-00797-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-021-00797-2

Keywords

Navigation