Andersen, P. (1960). Interhippocampal impulses. i–iv. Acta Physiologica Scandinavica, 48, 329.
CAS
PubMed
Article
Google Scholar
Andreasen, M., & Lambert, J. (1995). Regenerative properties of pyramidal cell dendrites in area ca1 of the rat hippocampus. The Journal of physiology, 483(Pt 2), 421.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bernander, Ö., Koch, C., Usher, M. (1994). The effect of synchronized inputs at the single neuron level. Neural Computation, 6(4), 622.
Article
Google Scholar
Bi, G.Q., & Poo, M.M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464.
CAS
PubMed
Article
Google Scholar
Branco, T., Clark, B.A., Häusser, M. (2010). Dendritic discrimination of temporal input sequences in cortical neurons. Science, 329 (5999), 1671.
CAS
PubMed
Article
PubMed Central
Google Scholar
Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94(5), 3637.
PubMed
Article
Google Scholar
Brette, R. (2009). Generation of correlated spike trains. Neural Computation, 21(1), 188.
PubMed
Article
Google Scholar
Bullock, T.H. (1945). Functional organization of the giant fiber system of lumbricus. Journal of Neurophysiology, 8(1), 55.
Article
Google Scholar
Cragg, B., & Hamlyn, L. (1955). Action potentials of the pyramidal neurones in the hippocampus of the rabbit. The Journal of Physiology, 129(3), 608.
CAS
PubMed
PubMed Central
Article
Google Scholar
Destexhe, A., Rudolph, M., Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews Neuroscience, 4(9), 739.
CAS
PubMed
Article
Google Scholar
DeFelipe, J., & Fariñas, I. (1992). The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 39(6), 563.
CAS
PubMed
Article
Google Scholar
De La Rocha, J., Doiron, B., Shea-Brown, E., Josić, K., Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448(7155), 802.
Article
CAS
Google Scholar
Destexhe, A. (2009). Self-sustained asynchronous irregular states and up–down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of Computational Neuroscience, 27(3), 493.
PubMed
Article
Google Scholar
Eccles, J., Llinás, R., Sasaki, K. (1966). The action of antidromic impulses on the cerebellar purkinje cells. The Journal of Physiology, 182(2), 316.
CAS
PubMed
PubMed Central
Article
Google Scholar
Fourcaud-Trocmé, N., Hansel, D., Van Vreeswijk, C., Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23(37), 11628.
PubMed
Article
Google Scholar
Fujita, Y., & Sakata, H. (1962). Electrophysiological properties of ca1 and ca2 apical dendrites of rabbit hippocampus. Journal of Neurophysiology, 25(2), 209.
CAS
PubMed
Article
Google Scholar
Golding, N. L., & Spruston, N. (1998). Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal ca1 pyramidal neurons. Neuron, 21(5), 1189.
CAS
PubMed
Article
Google Scholar
Golding, N.L., Jung H.Y., Mickus, T., Spruston, N. (1999). Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in ca1 pyramidal neurons. Journal of Neuroscience, 19(20), 8789.
CAS
PubMed
Article
Google Scholar
Golding, N.L., Jung, H.Y., Mickus, T., Spruston, N. (1999). Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in ca1 pyramidal neurons. Journal of Neuroscience, 19(20), 8789.
CAS
PubMed
Article
Google Scholar
Golding, N.L., Staff, N.P., Spruston, N. (2002). Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature, 418(6895), 326.
CAS
PubMed
Article
Google Scholar
Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500.
CAS
PubMed
PubMed Central
Article
Google Scholar
Houchin, J. (1973). Procion yellow electrodes for intracellular recording and staining of neurones in the somatosensory cortex of the rat, (Vol. 232 p. 67P).
Jaffe, D.B., Johnston, D., Lasser-Ross, N., Lisman, J.E., Miyakawa, H., Ross, W.N. (1992). The spread of na+ spikes determines the pattern of dendritic ca2+ entry into hippocampal neurons. Nature, 357(6375), 244.
CAS
PubMed
Article
Google Scholar
Jarsky, T., Roxin, A., Kath, W.L., Spruston, N. (2005). Conditional dendritic spike propagation following distal synaptic activation of hippocampal ca1 pyramidal neurons. Nature Neuroscience, 8(12), 1667.
CAS
PubMed
Article
Google Scholar
Kim, H.G., & Connors, B.W. (1993). Apical dendrites of the neocortex: correlation between sodium-and calcium-dependent spiking and pyramidal cell morphology. Journal of Neuroscience, 13(12), 5301.
CAS
PubMed
Article
Google Scholar
Kim, Y., Hsu, C.L., Cembrowski, M.S., Mensh, B.D., Spruston, N. (2015). Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. Elife, 4, e06414.
PubMed Central
Article
Google Scholar
Larkum, M.E., Kaiser, K., Sakmann, B. (1999a). Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proceedings of the National Academy of Sciences, 96(25), 14600.
CAS
Article
Google Scholar
Larkum, M.E., Zhu, J.J., Sakmann, B. (1999b). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338.
CAS
PubMed
Article
Google Scholar
Larkum, M.E., Zhu, J.J., Sakmann, B. (2001). Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. The Journal of Physiology, 533(2), 447.
CAS
PubMed
PubMed Central
Article
Google Scholar
Llinás, R., Nicholson, C., Freeman, J.A., Hillman, D.E. (1968). Dendritic spikes and their inhibition in alligator purkinje cells. Science, 160(3832), 1132.
PubMed
Article
Google Scholar
Llinas, R., & Nicholson, C. (1971). Electrophysiological properties of dendrites and somata in alligator purkinje cells. Journal of Neurophysiology, 34(4), 532.
CAS
PubMed
Article
Google Scholar
Losonczy, A., & Magee, J.C. (2006). Integrative properties of radial oblique dendrites in hippocampal ca1 pyramidal neurons. Neuron, 50(2), 291.
CAS
PubMed
Article
Google Scholar
Magee, J.C., & Johnston, D. (1995a). Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science, 268(5208), 301.
CAS
PubMed
Article
Google Scholar
Magee, J.C., & Johnston, D. (1995b). Characterization of single voltage-gated na+ and ca2+ channels in apical dendrites of rat ca1 pyramidal neurons. The Journal of Physiology, 487(Pt 1), 67.
CAS
PubMed
PubMed Central
Article
Google Scholar
Magee, J.C., Johnston, D., synaptically controlled, A. (1997). Associative signal for hebbian plasticity in hippocampal neurons. Science, 275(5297), 209.
CAS
PubMed
Article
Google Scholar
Markram, H., Lübke, J., Frotscher, M., Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science, 275(5297), 213.
CAS
PubMed
Article
Google Scholar
Martina, M., Vida, I., Jonas, P. (2000). Distal initiation and active propagation of action potentials in interneuron dendrites. Science, 287(5451), 295.
CAS
PubMed
Article
Google Scholar
Miyakawa, H., Ross, W.N., Jaffe, D., Callaway, J.C., Lasser-Ross, N., Lisman, J.E., Johnston, D. (1992). Synaptically activated increases in ca 2+ concentration in hippocampal ca1 pyramidal cells are primarily due to voltage-gated ca 2+ channels. Neuron, 9(6), 1163.
CAS
PubMed
Article
Google Scholar
Moore, J.J., Ravassard, P.M., Ho, D., Acharya, L., Kees, A.L., Vuong, C., Mehta, M.R. (2017). Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Science, 355(6331), eaaj1497.
PubMed
Article
CAS
Google Scholar
Murthy, V.N., & Fetz, E.E. (1994). Effects of input synchrony on the firing rate of a three-conductance cortical neuron model. Neural Computation, 6(6), 1111.
Article
Google Scholar
Polsky, A., Mel, B.W., Schiller, J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nature Neuroscience, 7(6), 621.
CAS
PubMed
Article
Google Scholar
Regehr, W.G., Connor, J.A., Tank, D.W. (1989). Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation. Nature, 341(6242), 533.
CAS
PubMed
Article
Google Scholar
Regehr, W.G., & Tank, D.W. (1990). Postsynaptic nmda receptor-mediated calcium accumulation in hippocatnpal cai pyramidal cell dendrites. Nature, 345, 807–810.
CAS
PubMed
Article
Google Scholar
Regehr, W.G., & Tank, D.W. (1992). Calcium concentration dynamics produced by synaptic activation of ca1 hippocampal pyramidal cells. The Journal of Neuroscience, 12(11), 4202.
CAS
PubMed
Article
Google Scholar
Remy, S., Csicsvari, J., Beck, H. (2009). Activity-dependent control of neuronal output by local and global dendritic spike attenuation. Neuron, 61(6), 906.
CAS
PubMed
Article
Google Scholar
Renart, A., De La Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., Harris, K.D. (2010). The asynchronous state in cortical circuits. Science, 327(5965), 587.
CAS
PubMed
PubMed Central
Article
Google Scholar
Reyes, A.D. (2003). Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nature Neuroscience, 6(6), 593.
CAS
PubMed
Article
Google Scholar
Royer, A.S., & Miller, R.F. (2007). Dendritic impulse collisions and shifting sites of action potential initiation contract and extend the receptive field of an amacrine cell. Visual Neuroscience, 24(4), 619.
PubMed
Article
Google Scholar
Rudolph, M., Hô, N., Destexhe, A. (2001). Synaptic background activity affects the dynamics of dendritic integration in model neocortical pyramidal neurons. Neurocomputing, 38, 327.
Article
Google Scholar
Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., Millner, S. (2010). .. In Proceedings of 2010 IEEE international symposium on (IEEE, 2010) Circuits and systems (ISCAS) (pp. 1947–1950).
Schemmel, J., Kriener, L., Müller, P., Meier, K. (2017). An accelerated analog neuromorphic hardware system emulating nmda-and calcium-based non-linear dendrites, arXiv:1703.07286.
Schiller, J., Schiller, Y., Stuart, G., Sakmann, B. (1997). Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. The Journal of Physiology, 505(3), 605.
CAS
PubMed
PubMed Central
Article
Google Scholar
Schiller, J., Major, G., Koester, H.J., Schiller, Y. (2000). Nmda spikes in basal dendrites of cortical pyramidal neurons. Nature, 404(6775), 285.
CAS
PubMed
Article
Google Scholar
Shea-Brown, E., Josić, K., de La Rocha, J., Doiron, B. (2008). Correlation and synchrony transfer in integrate-and-fire neurons: basic properties and consequences for coding. Physical Review Letters, 100(10), 108102.
PubMed
Article
CAS
Google Scholar
Stuart, G.J., Sakmann, B., et al. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature, 367(6458), 69.
CAS
PubMed
Article
Google Scholar
Sorra, K., & Harris, K.M. (1993). Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area ca1. Journal of Neuroscience, 13(9), 3736.
CAS
PubMed
Article
Google Scholar
Spruston, N., Jonas, P., Sakmann, B. (1995a). Dendritic glutamate receptor channels in rat hippocampal ca3 and ca1 pyramidal neurons. The Journal of Physiology, 482(Pt 2), 325.
CAS
PubMed
PubMed Central
Article
Google Scholar
Spruston, N., Schiller, Y., Stuart, G., Sakmann, B. (1995b). Activity-dependent action potential invasion and calcium influx into hippocampal ca1 dendrites. Science, 268(5208), 297.
CAS
PubMed
Article
Google Scholar
Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neuroscience, 9(3), 206.
CAS
PubMed
Article
Google Scholar
Turner, R., Meyers, D., Richardson, T., Barker, J. (1991). The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal ca1 pyramidal neurons. Journal of Neuroscience, 11(7), 2270.
CAS
PubMed
Article
Google Scholar
Turner, R., Maler, L., Deerinck, T., Levinson, S., Ellisman, M. (1994). Ttx-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron. Journal of Neuroscience, 14(11), 6453.
CAS
PubMed
Article
Google Scholar
Williams, S.R., & Stuart, G.J. (2000). Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. Journal of Neuroscience, 20(4), 1307.
CAS
PubMed
Article
Google Scholar
Williams, S.R., & Stuart, G.J. (2002). Dependence of epsp efficacy on synapse location in neocortical pyramidal neurons. Science, 295(5561), 1907.
CAS
PubMed
Article
Google Scholar
Wong, R., & Stewart, M. (1992). Different firing patterns generated in dendrites and somata of ca1 pyramidal neurones in guinea-pig hippocampus. The Journal of Physiology, 457, 675.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wong, R., Prince, D., Basbaum, A. (1979). Intradendritic recordings from hippocampal neurons. Proceedings of the National Academy of Sciences, 76(2), 986.
CAS
Article
Google Scholar
Zecevic, D. (1996). Multiple spike-initiation zones in single neurons revealed by voltage-sensitve dyes. Nature, 381(6580), 322.
CAS
PubMed
Article
Google Scholar
Zhu, J.J. (2000). Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by ca2+ action potentials in adult rat tuft dendrites. The Journal of Physiology, 526(3), 571.
CAS
PubMed
PubMed Central
Article
Google Scholar