Skip to main content
Log in

Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Many neuron types exhibit preferred frequency responses in their voltage amplitude (resonance) or phase shift to subthreshold oscillatory currents, but the effect of biophysical parameters on these properties is not well understood. We propose a general framework to analyze the role of different ionic currents and their interactions in shaping the properties of impedance amplitude and phase in linearized biophysical models and demonstrate this approach in a two-dimensional linear model with two effective conductances g L and g 1. We compute the key attributes of impedance and phase (resonance frequency and amplitude, zero-phase frequency, selectivity, etc.) in the g L  − g 1 parameter space. Using these attribute diagrams we identify two basic mechanisms for the generation of resonance: an increase in the resonance amplitude as g 1 increases while the overall impedance is decreased, and an increase in the maximal impedance, without any change in the input resistance, as the ionic current time constant increases. We use the attribute diagrams to analyze resonance and phase of the linearization of two biophysical models that include resonant (I h or slow potassium) and amplifying currents (persistent sodium). In the absence of amplifying currents, the two models behave similarly as the conductances of the resonant currents is increased whereas, with the amplifying current present, the two models have qualitatively opposite responses. This work provides a general method for decoding the effect of biophysical parameters on linear membrane resonance and phase by tracking trajectories, parametrized by the relevant biophysical parameter, in pre-constructed attribute diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: Relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.

    Article  PubMed  Google Scholar 

  • Broicher, T., Malerba, P., Dorval, A. D., Borisyuk, A., Fernandez, F. R., & White, J. A. (2012). Spike phase locking in CA1 pyramidal neurons depends on background conductance and firing rate. Journal of Neuroscience, 32, 14374–14388.

    Article  CAS  PubMed  Google Scholar 

  • Carandini, M., Mechler, F., Leonard, C. S., & Movshon, J. A. (1996). Spike train encoding by regular-spiking cells of the visual cortex. Journal of Neurophysiology, 76, 3425–3441.

    CAS  PubMed  Google Scholar 

  • Castro-Alamancos, M. A., Rigas, P., & Tawara-Hirata, Y. (2007). Resonance (approximately 10 Hz) of excitatory networks in motor cortex: Effects of voltage-dependent ion channel blockers. Journal of Physiology, 578, 173–191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dembrow, N. C., Chitwood, R. A., & Johnston, D. (2010). Projection-specific neuromodulation of medial prefrontal cortex neurons. Journal of Neuroscience, 30(50), 16922–16937.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dickson, C. T., & Alonso, A. A. (1997). Muscarinic induction of synchronous population activity in the entorhinal cortex. Journal of Neuroscience, 17(7), 6729–6744.

    CAS  PubMed  Google Scholar 

  • Engel, T. A., Schimansky-Geier, L., Herz, A. V., Schreiber, S., & Erchova, I. (2008). Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. Journal of Neurophysiology, 100, 1576–1588.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erchova, I., Kreck, G., Heinemann, U., & Herz, A. V. M. (2004). Dynamics of rat entorhinal cortex layer II and III cells: Characteristics of membrane potential resonance at rest predict oscillation properties near threshold. Journal of Physiology, 560, 89–110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ermentrout, G. B., & Terman, D. (2010). Mathematical foundations of neuroscience. New York: Springer.

    Book  Google Scholar 

  • Fernandez, F. R., & White, J. A. (2008). Artificial synaptic conductances reduce subthreshold oscillations and periodic firing in stellate cells of the entorhinal cortex. Journal of Neuroscience, 28, 3790–3803.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, F. R., Malerba, P., Bressloff, P. C., & White, J. A. (2013). Entorhinal stellate cells show preferred spike phase-locking to theta inputs that is enhanced by correlations in synaptic activity. Journal of Neuroscience, 33(14), 6027–6040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuhrmann, G., Markram, H., & Tsodyks, M. (2002). Spike frequency adaptation and neocortical rhythms. Journal of Neurophysiology, 88(2), 761–770.

    PubMed  Google Scholar 

  • Gray, C. M. (1994). Synchronous oscillations in neuronal systems: mechanisms and functions. Journal of Computational Neuroscience, 1, 11–38.

    Article  CAS  PubMed  Google Scholar 

  • Gutfreund, Y., Yarom, Y., & Segev, I. (1995). Subthreshold oscillations and resonant frequency in guinea pig cortical neurons: Physiology and modeling. Journal of Physiology, 483, 621–640.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haas, J. S., & White, J. A. (2002). Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. Journal of Neurophysiology, 88, 2422–2429.

    Article  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conductance and excitation in nerve. Journal of Physiology, 117, 500–544.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu, H., Vervaeke, K., & Storm, J. F. (2002). Two forms of electrical resonance at theta frequencies generated by M-current, h-current and persistent Na + current in rat hippocampal pyramidal cells. Journal of Physiology, 545(3), 783–805.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hutcheon, B., & Yarom, Y. (2000). Resonance oscillations and the intrinsic frequency preferences in neurons. Trends in Neurosciences, 23, 216–222.

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon, B., Miura, R. M., & Puil, E. (1996). Subthreshold membrane resonance in neocortical neurons. Journal of Neurophysiology, 76, 683–697.

    CAS  PubMed  Google Scholar 

  • Izhikevich, E. M., Desay, N. S., Walcott, E. C., & Hoppensteadt, F. C. (2003). Bursts as a unit of neural information: Selective communication via resonance. Trends in Neurosciences, 26, 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Kispersky, T. J., Fernandez, F. R., Economo, M. N., & White, J. A. (2012). Spike resonance properties in hippocampal O-LM cells are dependent on refractory dynamics. Journal of Neuroscience, 32, 3637–3651.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lampl, I., & Yarom, Y. (1997). Subthreshold oscillations and resonant behaviour: Two manifestations of the same mechanism. Neuron, 78, 325–341.

    CAS  Google Scholar 

  • Lau, T., & Zochowski, M. (2011). The resonance frequency shift, pattern formation, and dynamical network reorganization via sub-threshold input. PLoS ONE, 6, e18983.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ledoux, E., & Brunel, N. (2011). Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Frontiers in Computational Neuroscience, 5, 1–17.

    Google Scholar 

  • Llinás, R. R., & Yarom, Y. (1986). Oscillatory properties of guinea pig olivary neurons and their pharmachological modulation: An in vitro study. Journal of Physiology, 376, 163–182.

    PubMed Central  PubMed  Google Scholar 

  • Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717.

    CAS  PubMed  Google Scholar 

  • Moca, V. V., Nicolic, D., Singer, W., Muresan, R. (2012). Membrane resonance enables stable robust gamma oscillations. Cerebral Cortex, Epub ahead of print.

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narayanan, R., & Johnston, D. (2007). Long-term potentiation in rat Hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron, 56, 1061–1075.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reboreda, A., Sanchez, E., Romero, M., & Lamas, J. A. (2003). Intrinsic spontaneous activity and subthreshold oscillations in neurones of the rat dorsal column nuclei in culture. Journal of Physiology, 551(Pt 1), 191–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinker, S., Puil, E., & Miura, R. M. (2004). Membrane resonance and stochastic resonance modulate firing patterns of thalamocortical neurons. Journal of Computational Neuroscience, 16, 15–25.

    Article  PubMed  Google Scholar 

  • Richardson, M. J. E., Brunel, N., & Hakim, V. (2003). From subthreshold to firing-rate resonance. Journal of Neurophysiology, 89, 2538–2554.

    Article  PubMed  Google Scholar 

  • Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neural modeling (2nd ed., pp. 251–292). Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • Rotstein, H. G., Oppermann, T., White, J. A., & Kopell, N. (2006). A reduced model for medial entorhinal cortex stellate cells: Subthreshold oscillations, spiking and synchronization. Journal of Computational Neuroscience, 21, 271–292.

    Article  PubMed  Google Scholar 

  • Schmitz, D., Gloveli, T., Behr, J., Dugladze, T., & Heinemann, U. (1998). Subthreshold membrane potential oscillations in neurons of deep layers of the entorhinal cortex. Neuron, 85, 999–1004.

    CAS  Google Scholar 

  • Schreiber, S., Erchova, I., Heinemann, U., & Herz, A. V. (2004). Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. Journal of Neurophysiology, 92, 408–415.

    Article  PubMed  Google Scholar 

  • Sciamanna, G., & Wilson, C. J. (2011). The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons. Journal of Neurophysiology, 106, 2936–2949.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith, G. D., Cox, C. L., Sherman, S. M., & Rinzel, J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of Neurophysiology, 83(1), 588–610.

    CAS  PubMed  Google Scholar 

  • Stark, E., Eichler, R., Roux, L., Fujisawa, S., Rotstein, H. G., Buzsáki, G. (2013). Inhibitioninduced theta resonance in cortical circuits. Neuron, In Press.

  • Thevenin, J., Romanelli, M., Vallet, M., Brunel, M., & Erneux, T. (2011). Resonance assisted synchronization of coupled-oscillators: frequency locking without phase locking. Physical Review Letters, 107, 104101.

    Article  CAS  PubMed  Google Scholar 

  • Tohidi, V., & Nadim, F. (2009). Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. Journal of Neuroscience, 6427, 6435.

    Google Scholar 

  • Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Review, 90, 1195–1268.

    Article  Google Scholar 

  • Wu, N., Hsiao, C.-F., & Chandler, S. H. (2001). Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: Participants in burst generation. Journal of Neuroscience, 21, 3729–3739.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Diana Martinez and David Fox for their comments on this manuscript.

Grants

Supported by NSF DMS1313861 (HGR) and NIH MH060605, NS083319 (FN).

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio G. Rotstein.

Additional information

Action Editor: Nicolas Brunel

Appendices

Appendix A. Two-dimensional linear systems: eigenvalues, natural frequency and impedance

Consider the following two-dimensional linear system

$$ \left\{\begin{array}{l}X\prime = aX+ bY+{A}_{i n}{e}^{i\omega t}\hfill \\ {}Y\prime = cX+ dY\hfill \end{array}\right. $$
(17)

a, b, c and d are constant, ω > 0 and A in  ≥ 0.

1.1 Intrinsic oscillations and natural frequency

The Jacobian of the corresponding homogeneous system (A in  = 0) is given by

$$ J=\left(\begin{array}{cc}\hfill a\hfill & \hfill b\hfill \\ {}\hfill c\hfill & \hfill d\hfill \end{array}\right). $$

The roots of the characteristic polynomial are given by

$$ {r}_{1,2}=\frac{\left(a+d\right)\pm \sqrt{{\left(a-d\right)}^2+4 bc}}{2}. $$
(18)

From Eq. (18), the homogeneous system displays stable oscillatory solutions (focus points) for values of the parameters satisfying

$$ \begin{array}{r}\hfill {\left(a-d\right)}^2+4 bc<0\\ {}\hfill a+d\le 0.\end{array} $$

The natural frequency is given by

$$ \mu =\frac{\sqrt{4 bc+{\left(a-d\right)}^2}}{2}. $$
(19)

1.2 Impedance function

The particular solutions to system (17) have the form

$$ \begin{array}{c}\hfill {X}_p(t)={A}_{out}{e}^{i\omega t}\hfill \\ {}\hfill {Y}_p(t)={B}_{out}{e}^{i\omega t}\hfill \end{array} $$

Substituting into system (17) and rearranging terms we obtain

$$ \left(\begin{array}{cc}\hfill \left( i\omega -a\right)\hfill & \hfill -b\hfill \\ {}\hfill -c\hfill & \hfill \left( i\omega -d\right)\hfill \end{array}\right)\left(\begin{array}{c}\hfill {A}_{out}\hfill \\ {}\hfill {B}_{out}\hfill \end{array}\right)=\left(\begin{array}{c}\hfill {A}_{in}\hfill \\ {}\hfill 0\hfill \end{array}\right). $$
(20)

By solving the algebraic system (20) we obtain

$$ \begin{array}{l}Z\left(\omega \right)=\frac{A_{out}}{A_{in}}=\frac{-d+ i\omega}{\left( ad- bc-{\omega}^2\right)- i\omega \left(a+d\right)},\hfill \\ {}{\left|Z\left(\omega \right)\right|}^2=\frac{A_{out}^2}{A_{in}^2}=\frac{d^2+{\omega}^2}{{\left( ad- bc-{\omega}^2\right)}^2+{\left(a+d\right)}^2{\omega}^2}.\hfill \end{array} $$
(21)

The impedance Z peaks at the resonant frequency

$$ {\omega}_{res}=\sqrt{-{d}^2+\sqrt{b^2{c}^2-2 abcd-2{d}^2 bc}}. $$
(22)

The impedance phase is given by

$$ \tan \left(\phi \right)=\frac{\left( ad- bc-{\omega}^2\right)\omega -\left(a+d\right)\omega d}{\left( ad- bc-{\omega}^2\right)d+\left(a+d\right){\omega}^2}=-\frac{ bc+{d}^2+{\omega}^2}{\left( ad- bc\right)d+a{\omega}^2}\omega . $$
(23)

Appendix B. The 2D biophysical models

The voltage-dependent activation/inactivation curves x (V) and voltage-dependent time scales τ x (V) used in the kinetic Eq. (3) for the gating variables x are frequently expressed in terms of

$$ \begin{array}{c}\hfill {x}_{\infty }(V)=\frac{\alpha_x(V)}{\alpha_x(V)+{\beta}_x(V)}\hfill \\ {}\hfill {\tau}_x(V)=\frac{1}{\alpha_x(V)+{\beta}_x(V)}.\hfill \end{array} $$
(24)

Below we present the functions and parameters corresponding to the various models we use in this paper.

2.1 I h  + I p model

This model has been modified from (Acker et al. 2003). It has a persistent sodium current and a two-component (fast and slow) h-current given by I p  = G p p(V − E Na ) = G p p (V)(V − E Na ) and I h =G h r (V)(V--E h ) respectively with E h  = −20 mV, E Na  = 55 mV. The voltage-dependent activation/inactivation and time constants are given by

$$ \begin{array}{c}\hfill {p}_{\infty }(V)=1/\left(1+{e}^{-\left(V+38\right)/6.5}\right)\hfill \\ {}\hfill {r}_{f,}{}_{\infty }(V)=1/\left(1+{e}^{\left(V+79.2\right)/9.78}\right)\hfill \\ {}\hfill {\tau}_{r_f}(V)=0.51/\left({e}^{\left(V-1.7\right)/10}+{e}^{-\left(V+340\right)/52}\right)+1.\hfill \end{array} $$

2.2 I Ks  + I p model

This model has been proposed in (Acker et al. 2003). It has a persistent sodium current and a slow potassium (M-type) current given by I p  = G p p (V − E Na ) = G p p (V)(V − E Na ) and I Ks  = g q q (V − E K ) with E Na  = 55 mV and E K  = 90 mV. The voltage-dependent activation/inactivation and time constants are given by

$$ \begin{array}{l}{p}_{\infty }(V)=1/\left(1+{e}^{-\left(V+38\right)/6.5}\right)\hfill \\ {}{q}_{\infty }(V)=1/\left(1+{e}^{\left(V+35\right)/6.5}\right)\hfill \\ {}{q}_{\tau }(V)=90\hfill \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotstein, H.G., Nadim, F. Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. J Comput Neurosci 37, 9–28 (2014). https://doi.org/10.1007/s10827-013-0483-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0483-3

Keywords

Navigation