Skip to main content
Log in

Reduced models for binocular rivalry

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Binocular rivalry occurs when two very different images are presented to the two eyes, but a subject perceives only one image at a given time. A number of computational models for binocular rivalry have been proposed; most can be categorised as either “rate” models, containing a small number of variables, or as more biophysically-realistic “spiking neuron” models. However, a principled derivation of a reduced model from a spiking model is lacking. We present two such derivations, one heuristic and a second using recently-developed data-mining techniques to extract a small number of “macroscopic” variables from the results of a spiking neuron model simulation. We also consider bifurcations that can occur as parameters are varied, and the role of noise in such systems. Our methods are applicable to a number of other models of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ashwin, P., & Lavric, A. (2010). A low-dimensional model of binocular rivalry using winnerless competition. Physica D (in press).

  • Bahraminasab, A., Kenwright, D., Stefanovska, A., Ghasemi, F., & McClintock, P. (2008). Phase coupling in the cardiorespiratory interaction. IET Systems Biology, 2, 48–54.

    Article  CAS  PubMed  Google Scholar 

  • Bengio, Y., Delalleau, O., Le Roux, N., Paiement, J., Vincent, P., & Ouimet, M. (2004). Learning eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16(10), 2197–2219.

    Article  PubMed  Google Scholar 

  • Blake, R. (2001). A primer on binocular rivalry, including current controversies. Brain and Mind, 2(1), 5–38.

    Article  Google Scholar 

  • Blake, R., & Logothetis. N., (2002) Visual competition. Nature Reviews Neuroscience, 3(1), 1–11.

    Article  Google Scholar 

  • Cai, D., Tao, L., Shelley, M., & McLaughlin, D. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(20), 7757.

    Article  CAS  PubMed  Google Scholar 

  • Coifman, R., & Lafon, S. (2006). Diffusion maps. Applied and Computational Harmonic Analysis, 21(1), 5–30.

    Article  Google Scholar 

  • Dayan, P. (1998). A hierarchical model of binocular rivalry. Neural Computation, 10(5), 1119–1135.

    Article  CAS  PubMed  Google Scholar 

  • Erban, R., Frewen, T., Wang, X., Elston, T., Coifman, R., Nadler, B., et al. (2007). Variable-free exploration of stochastic models: A gene regulatory network example. The Journal of Chemical Physics, 126, 155,103.

    Google Scholar 

  • Ermentrout, B. (1994), Reduction of conductance-based models with slow synapses to neural nets. Neural Computation, 6(4), 679–695.

    Article  Google Scholar 

  • Freeman, A. (2005). Multistage model for binocular rivalry. Journal of Neurophysiology, 94(6), 4412–4420.

    Article  PubMed  Google Scholar 

  • Friedrich, R., Siegert, S., Peinke, J., Lück, S., Siefert, M., Lindemann, M., et al. (2000). Extracting model equations from experimental data. Physics Letters A, 271(3), 217–222.

    Article  CAS  Google Scholar 

  • Gerstner, W., & Kistler, W. (2002). Spiking neuron models: An introduction. New York: Cambridge University Press.

    Google Scholar 

  • Gradišek, J., Siegert, S., Friedrich, R., & Grabec, I. (2000). Analysis of time series from stochastic processes. Physical Review E, 62(3), 3146–3155.

    Article  Google Scholar 

  • Grossberg, S., Yazdanbakhsh, A., Cao, Y., & Swaminathan, G. (2008). How does binocular rivalry emerge from cortical mechanisms of 3-D vision? Vision Research, 48(21), 2232–2250.

    Article  PubMed  Google Scholar 

  • Gutkin, B., Laing, C., Colby, C., Chow, C., & Ermentrout, G. (2001). Turning on and off with excitation: The role of spike-timing asynchrony and synchrony in sustained neural activity. Journal of Computational Neuroscience, 11(2), 121–134.

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe, I. (2002). Principal component analysis. New York: Springer

    Google Scholar 

  • Jolly, M., Kevrekidis, I., & Titi, E. (1990). Approximate inertial manifolds for the Kuramoto–Sivashinsky equation: Analysis and computations. Physica D, 44(1–2), 38–60.

    Article  Google Scholar 

  • Kalarickal, G., & Marshall, J. (2000). Neural model of temporal and stochastic properties of binocular rivalry. Neurocomputing, 32–33, 843–853.

    Article  Google Scholar 

  • Kevrekidis, I., Gear, C., Hyman, J., Kevrekidis, P., Runborg, O., & Theodoropoulos, C. (2003). Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis. Communications in Mathematical Sciences, 1(4), 715–762.

    Google Scholar 

  • Kuusela, T., Shepherd, T., & Hietarinta, J. (2003). Stochastic model for heart-rate fluctuations. Physical Review E, 67(6), 061,904.

    Article  Google Scholar 

  • Lago-Fernandez, L., & Deco, G. (2002). A model of binocular rivalry based on competition in IT. Neurocomputing, 44–46, 503–507.

    Article  Google Scholar 

  • Laing, C. (2006). On the application of “equation-free” modelling to neural systems. Journal of Computational Neuroscience, 20(1), 5–23.

    Article  PubMed  Google Scholar 

  • Laing, C., & Chow, C. (2001). Stationary bumps in networks of spiking neurons. Neural Computation, 13(7), 1473–1494.

    Article  CAS  PubMed  Google Scholar 

  • Laing, C., & Chow, C. (2002). A spiking neuron model for binocular rivalry. Journal of Computational Neuroscience, 12(1), 39–53.

    Article  PubMed  Google Scholar 

  • Laing, C., Frewen, T., & Kevrekidis, I. (2007). Coarse-grained dynamics of an activity bump in a neural field model. Nonlinearity, 20(9), 2127–2146.

    Article  Google Scholar 

  • Leopold, D., & Logothetis, N. (1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Sciences, 3(7), 254–264.

    Article  PubMed  Google Scholar 

  • Logothetis, N., Leopold, D., & Sheinberg, D. (1996) What is rivalling during binocular rivalry? Nature, 380(6575), 621–624.

    Article  CAS  PubMed  Google Scholar 

  • Makeev, A., Maroudas, D., & Kevrekidis, I. (2002). “Coarse” stability and bifurcation analysis using stochastic simulators: Kinetic Monte Carlo examples. The Journal of Chemical Physics, 116, 10,083.

    Article  CAS  Google Scholar 

  • Marder, E., & Bucher, D. (2001). Central pattern generators and the control of rhythmic movements. Current Biology, 11(23), 986–996.

    Article  Google Scholar 

  • Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98(3), 1125.

    Article  PubMed  Google Scholar 

  • van Mourik, A., Daffertshofer, A., & Beek, P. (2006). Deterministic and stochastic features of rhythmic human movement. Biological Cybernetics, 94(3), 233–244.

    Article  PubMed  Google Scholar 

  • Nadler, B., Lafon, S., Coifman, R., & Kevrekidis, I. (2006). Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Applied and Computational Harmonic Analysis, 21, 113–127.

    Article  Google Scholar 

  • Ragwitz, M., & Kantz, H. (2001). Indispensable finite time corrections for Fokker–Planck equations from time series data. Physical Review Letters, 87(25), 254,501.

    Article  CAS  PubMed  Google Scholar 

  • Rega, G., & Troger, H. (2005). Dimension reduction of dynamical Systems: Methods, models, applications. Nonlinear Dynamics, 41(1), 1–15.

    Article  Google Scholar 

  • Rybak, I., Shevtsova, N., Paton, J., Dick, T., St-John, W., Mörschel, M., et al. (2004). Modeling the ponto-medullary respiratory network. Respiratory Physiology & Neurobiology, 143(2–3), 307–319.

    Article  CAS  Google Scholar 

  • Shpiro, A., Moreno-Bote, R., Rubin, N., & Rinzel, J. (2009). Balance between noise and adaptation in competition models of perceptual bistability. Journal of Computational Neuroscience, 27(1), 37–54.

    Article  PubMed  Google Scholar 

  • Shriki, O., Hansel, D., & Sompolinsky, H. (2003). Rate models for conductance-based cortical neuronal networks. Neural Computation, 15(8), 1809–1841.

    Article  PubMed  Google Scholar 

  • Stollenwerk, L., & Bode, M. (2003). Lateral neural model of binocular rivalry. Neural Computation, 15(12), 2863–2882.

    Article  PubMed  Google Scholar 

  • Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in Cognitive Sciences, 10(11), 502–511.

    Article  PubMed  Google Scholar 

  • Tranchina, D. (2009). Population density methods in large-scale neural network modelling. In C. Laing, & G. J. Lord (eds) Stochastic methods in neuroscience (pp. 181–216). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Wilson, H. (2003). Computational evidence for a rivalry hierarchy in vision. Proceedings of the National Academy of Sciences, USA, 100, 14,499–14,503.

    Article  CAS  Google Scholar 

  • Wilson, H., & Cowan, J. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12(1), 1–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of C.R.L. was partially supported by the Marsden Fund, administered by The Royal Society of New Zealand. The work of I.G.K. and T.F. was partially supported by the National Science Foundation and DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo R. Laing.

Additional information

Action Editor: Carson C. Chow

Appendix: A model equations

Appendix: A model equations

Here we present the model equations. They are very similar to those in Laing and Chow (2002). For each excitatory neuron we have

$$ \frac{dV_e}{dt} = I_{syn}+I_{ext}-I_{mem}(V_e,n_e,h_e)-I_{AHP} \label{eq:dVe} \\ $$
(31)
$$ \frac{dn_e}{dt} = \psi[\alpha_n(V_e)(1-n_e)-\beta_n(V_e)n_e] \\ $$
(32)
$$ \frac{dh_e}{dt} = \psi[\alpha_h(V_e)(1-h_e)-\beta_h(V_e)h_e] \\ $$
(33)
$$ \tau_e\frac{ds_e}{dt} = A\sigma(V_e)(1-s_e)-s_e \\ $$
(34)
$$ \frac{d[Ca]}{dt} = \frac{-0.002g_{Ca}(V_e-V_{Ca})}{1+\exp{[-(V_e+25)/2.5]}}-[Ca]/80 \label{eq:dCa}\\ $$
(35)
$$ \tau_g\frac{d\phi}{dt} = 1-\phi-B\sigma(V_e)\phi \label{eq:dphi} $$
(36)

where \(I_{mem}(V_e,n_e,h_e)=g_L(Ve-V_L)+g_Kn_e^4(V_e-V_K)+g_{Na}(m_{\infty}(V_e))^3h_e(V_e-V_{Na})\) and I AHP  = g AHP [Ca]/([Ca] + 1)(V e  − V K ). Other functions are m  ∞  (V) = α m (V)/(α m (V) + β m (V)), α m (V) = 0.1(V + 30)/ \((1-\exp{[-0.1(V+30)]})\), \(\beta_{m}(V)=4\exp[-(V+55)/\) 18], \(\alpha_n(V)=0.01(V+34)/(1-\exp{[-0.1(V+34)]})\), \(\beta_n(V)=0.125\exp{[-(V+44)/80]}\), \(\alpha_h(V)=0.07\exp\) [ − (V + 44)/20], \(\beta_h(V)=1/(1+\exp{[-0.1(V+14)]})\), \(\sigma(V)=1/(1+\exp{[-(V+20)/4]}\). Parameters are g L  = 0.05 mS/cm2, V L  = − 65 mV, g K  = 40 mS/cm2, V K  = − 80 mV, g Na  = 100 mS/cm2, V Na  = 55 mV, V Ca  = 120  mV, g AHP  = 0.05 mS/cm2, g Ca  = 0.1 mS/cm2, ψ = 3, τ e  = 8 ms, \(\tau_g=\text{1,000}\) ms and A = 20. B is initially 1.3, but is varied in Section 4.

For each inhibitory neuron we have

$$ \frac{dV_i}{dt} = I_{syn}-I_{mem}(V_i,n_i,h_i) \\ $$
(37)
$$ \frac{dn_i}{dt} = \psi[\alpha_n(V_i)(1-n_i)-\beta_n(V_i)n_i] \\ $$
(38)
$$ \frac{dh_i}{dt} = \psi[\alpha_h(V_i)(1-h_i)-\beta_h(V_i)h_i] \\ $$
(39)
$$ \tau_i\frac{ds_i}{dt} = A\sigma(V_i)(1-s_i)-s_i \label{eq:dVi} $$
(40)

where τ i  = 10 ms and other functions are as above.

The synaptic current entering the jth excitatory neuron is

$$ (V_{+}-V_e^j)\frac{1}{N}\sum\limits_{k=1}^Ng_{ee}^{jk}s_e^k\phi^k+(V_{-}-V_e^j)\frac{1}{N}\sum\limits_{k=1}^Ng_{ie}^{jk}s_i^k $$
(41)

where \(V_e^j\) is the voltage of the jth excitatory neuron in mV, \(s_{e/i}^k\) is the strength of the synapse emanating from the kth excitatory/inhibitory neuron, ϕ k is the factor by which the kth excitatory neuron is depressed, N = 60 is the number of excitatory neurons (equal to the number of inhibitory neurons), and the Gaussian coupling functions are given by

$$ g_{ee}^{jk}=\alpha_{ee}\sqrt{50/\pi}\exp{\{-50[(j-k)/N]^2\}} $$
(42)

and

$$ g_{ie}^{jk}=\alpha_{ie}\sqrt{20/\pi}\exp{\{-20[(j-k)/N]^2\}}. $$
(43)

The reversal potentials are V  +  = 0 mV, V  −  = − 80 mV. Similarly, the synaptic current entering the jth inhibitory neuron is

$$ (V_{+}-V_i^j)\frac{1}{N}\sum\limits_{k=1}^Ng_{ei}^{jk}s_e^k+(V_{-}-V_e^j)\frac{1}{N}\sum\limits_{k=1}^Ng_{ii}^{jk}s_i^k $$
(44)

where \(V_i^j\) is the voltage of the jth inhibitory neuron in mV, and the coupling functions are

$$ g_{ei}^{jk}=\alpha_{ei}\sqrt{20/\pi}\exp{\{-20[(j-k)/N]^2\}} $$
(45)

and

$$ g_{ii}^{jk}=\alpha_{ii}\sqrt{30/\pi}\exp{\{-30[(j-k)/N]^2\}}. $$
(46)

Parameters are α ee  = 0.285 mS/cm2, α ie  = 0.36 mS/cm2, α ei  = 0.2 mS/cm2 and α ii  = 0.07 mS/cm2. The external current to the jth excitatory neuron in μA/cm2 is

$$\begin{array}{lll} I_{ext}^j&=&\frac{0.4}{\sqrt{2}}\left[\exp{\left(-\left[\frac{10[j-N/4]}{N}\right]^2\right)}\right.\\ &&\left.+\exp{\left(-\left[\frac{10[j-3N/4]}{N}\right]^2\right)}\right]-0.01 \end{array} $$
(47)

i.e. the external current injected into the excitatory population consists of two Gaussians, centered at 1/4 and 3/4 of the way around the domain. The equations were simulated using Euler’s method with a fixed time-step of 0.02 ms, and no significant changes in the network behaviour were observed when time-steps of 0.01 or 0.005 ms were used.

Note that the system is completely deterministic. Section 5 discusses the results from simulating a stochastic version of this network.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laing, C.R., Frewen, T. & Kevrekidis, I.G. Reduced models for binocular rivalry. J Comput Neurosci 28, 459–476 (2010). https://doi.org/10.1007/s10827-010-0227-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0227-6

Keywords

Navigation