Skip to main content

Advertisement

Log in

A computational model of rapid task-related plasticity of auditory cortical receptive fields

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Receptive field properties of neurons in A1 can rapidly adapt their shapes during task performance in accord with specific task demands and salient sensory cues (Fritz et al., Hearing Research, 206:159–176, 2005a, Nature Neuroscience, 6: 1216–1223, 2003). Such modulatory changes selectively enhance overall cortical responsiveness to target (foreground) sounds and thus increase the likelihood of detection against the background of reference sounds. In this study, we develop a mathematical model to describe how enhancing discrimination between two arbitrary classes of sounds can lead to the observed receptive field changes in a variety of spectral and temporal discrimination tasks. Cortical receptive fields are modeled as filters that change their spectro-temporal tuning properties so as to respond best to the discriminatory acoustic features between foreground and background stimuli. We also illustrate how biologically plausible constraints on the spectro-temporal tuning of the receptive fields can be used to optimize the plasticity. Results of the model simulations are compared to published data from a variety of experimental paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aertsen, A. M., Olders, J. H., & Johannesma, P. I. (1981). Spectro-temporal receptive fields of auditory neurons in the grassfrog. III. Analysis of the stimulus-event relation for natural stimuli. Biological Cybernetics, 39, 195–209.

    Article  CAS  PubMed  Google Scholar 

  • Arfken, G. (1985). Lagrange multipliers. In: Mathematical methods for physicists (pp. 945–950). Orlando: Academic.

    Google Scholar 

  • Atiani, S., Elhilali, M., David, S. V., Fritz, J. B., Shamma, S. A. (2009). Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron, 61(3), 467–480.

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1995). Receptive-field dynamics in the central visual pathways. Trends in Neurosciences, 18, 451–458.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, W. M., Doddingtion, G. R., & Goudie-Marshall, K. M. (1986). The DARPA speech recognition research database: Specifications and status. Proc. DARPA Workshop on Speech Recognition, February 1986, pp. 93–99.

  • Fritz, J. B. (2005). Do Salient Temporal Cues Play a Role in Dynamic Receptive Field Plasticity in A1? In: Association for Research in otolaryngology Abstract 1323.

  • Fritz, J., Elhilali, M., & Shamma, S. (2005a). Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Hearing Research, 206, 159–176.

    Article  PubMed  Google Scholar 

  • Fritz, J. B., Elhilali, M., & Shamma, S. A. (2005b). Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neurophysiology, 25, 7623–7635.

    CAS  Google Scholar 

  • Fritz, J. B., Elhilali, M., & Shamma, S. A. (2007). Adaptive changes in cortical receptive fields induced by attention to complex sounds. Journal of Neurophysiology, 98, 2337–2346.

    Article  PubMed  Google Scholar 

  • Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6, 1216–1223.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (1995). Conditioned Avoidance. In G. M. Klump RJ Dooling, R. R. Fay & W. C. Stebbins (Eds.), Methods in comparative psychoacoustics (pp. 79–94). Switzerland: Birkhauser Verlag.

    Google Scholar 

  • Klein, D. J., Depireux, D. A., Simon, J. Z., & Shamma, S. A. (2000). Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design. Journal of Computational Neuroscience, 9, 85–111.

    Article  CAS  PubMed  Google Scholar 

  • Kowalski, N., Depireux, D. A., & Shamma, S. A. (1996). Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. Journal of Neurophysiology, 76, 3503–3523.

    CAS  PubMed  Google Scholar 

  • Ladefoged, P. (2005) A course in phonetics. Wadsworth Publishing; 5 edition (June 24, 2005).

  • Moler, C. B., & Stewart, G. W. (1973). An algorithm for generalized matrix eigenvalue problems. SIAM Journal on Numerical Analysis, 10, 241–256.

    Article  Google Scholar 

  • Soto, G., Kopell, N., & Sen, K. (2006). Network architecture, receptive fields, and neuromodulation: computational and functional implications of cholinergic modulation in primary auditory cortex. Journal of Neurophysiology, 96, 2972–2983.

    Article  PubMed  Google Scholar 

  • Theunissen, F. E., David, S. V., Singh, N. C., Hsu, A., Vinje, W. E., & Gallant, J. L. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network, 12, 289–316.

    CAS  PubMed  Google Scholar 

  • Yin, P, Fritz, J. B., Shamma, S. A. (2007). Can ferrets perceive relative pitch? In: Association for research in otolaryngology. Denver: Abstract 843.

Download references

Acknowledgement

This work was supported by the National Institutes of Health (grants R01DC005779 and F32DC008453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihab Shamma.

Additional information

Action Editor: J. Rinzel

Appendix I

Appendix I

Derivation of Eq. (1)

$$ d = \int\limits_{t_1}^{t_2} {\left( {{r_1}(t) - {r_2}(t)} \right)\,} dt = \int\limits_{t_1}^{t_2} {\left( {{r_1}{{(t)}^2} + {r_2}{{(t)}^2} - 2{r_1}(t){r_2}(t)} \right)} \,dt $$
(4)

Expanding the first term:

$$ \begin{array}{*{20}{c}} {\int\limits_{t_1}^{t_2} {{r_1}{{(t)}^2} = \int\limits_{t_1}^{t_2} {\sum\limits_f {\sum\limits_k {\int\limits_\tau {\int\limits_\alpha {h\left( {\tau, f} \right){s_1}\left( {t - \tau, f} \right)h\left( {\alpha, k} \right){s_1}\left( {t - \alpha, k} \right)\,\,d\tau \,\,} } d\alpha \,\,} } dt} } } \\ { = \sum\limits_f {\sum\limits_k {\int\limits_\tau {\int\limits_\alpha {h\left( {\tau, f} \right)h\left( {\alpha, k} \right)\,d\tau \,d\alpha \,\int\limits_t {{s_1}\left( {t - \tau, f} \right){s_1}\left( {t - \alpha, k} \right)} \,dt} } } } } \\ { = \sum\limits_f {\sum\limits_k {\int\limits_\tau {\int\limits_\alpha {h\left( {\tau, f} \right)h\left( {\alpha, k} \right){c_{1,1}}\left( {\tau - \alpha, f,k} \right)\,d\tau \,d\alpha } } } } } \\ { = \sum\limits_f {\sum\limits_k {H(f){C_1}\left( {f,k} \right)H(k)} } } \\ \end{array} $$
(5)

Where H and C 1 are defined as:

$$ \begin{gathered} H(f) = \left[ {h\left( {0,f} \right)h\left( {1,f} \right)...h\left( {n,f} \right)} \right] \hfill \\ {C_{1,1}}(f,k) = \left[ {\begin{array}{*{20}{c}} {{c_{1,1}}(0,f,k)} & {{c_{1,1}}(1,f,k)} & \cdots & {{c_{1,1}}(n,f,k)} \\ {{c_{1,1}}( - 1,f,k)} & {{c_{1,1}}(0,f,k)} & \cdots & {{c_{1,1}}(n - 1,f,k)} \\ \vdots & \vdots & {} & \vdots \\ {{c_{1,1}}( - n,f,k)} & {{c_{1,1}}( - n + 1,f,k)} & \cdots & {{c_{1,1}}(0,f,k)} \\ \end{array} } \right] \hfill \\ \end{gathered} $$

But the Eq. (5) is a quadratic form itself:

$$ \sum\limits_f {\sum\limits_k {H(f){C_{1,1}}\left( {f,k} \right)H(k)} } = \Pi \,{\Omega_{1,1}}\,{\Pi^T} $$

Expanding the other two terms of Eq. (4) in the same way, d can be written as:

$$ \begin{array}{*{20}{c}} {d = \Pi \,\,\left( {{\Omega_{1,1}} + {\Omega_{2,2}} - 2{\Omega_{1,2}}} \right)\,\,{\Pi^T}} \\ { = \Pi \,\Omega \,{\Pi^T}} \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesgarani, N., Fritz, J. & Shamma, S. A computational model of rapid task-related plasticity of auditory cortical receptive fields. J Comput Neurosci 28, 19–27 (2010). https://doi.org/10.1007/s10827-009-0181-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0181-3

Keywords

Navigation