Skip to main content
Log in

The interaction of positive and negative sensory feedback loops in dynamic regulation of a motor pattern

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In many rhythmic behaviors, phasic sensory feedback modifies the motor pattern. This modification is assumed to depend on feedback sign (positive vs. negative). While on a phenomenological level feedback sign is well defined, many sensory pathways also process antagonistic, and possibly contradictory, sensory information. We here model the locust flight pattern generator and proprioceptive feedback provided by the tegula wing receptor to test the functional significance of sensory pathways processing antagonistic information. We demonstrate that the tegula provides delayed positive feedback via interneuron 301, while all other pathways provide negative feedback. Contradictory to previous assumptions, the increase of wing beat frequency when the tegula is activated during flight is due to the positive feedback. By use of an abstract model we reveal that the regulation of motor pattern frequency by sensory feedback critically depends on the interaction of positive and negative feedback, and thus on the weighting of antagonistic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ausborn, J., Stein, W., & Wolf, H. (2007). Frequency control of motor patterning by negative sensory feedback. The Journal of Neuroscience, 27, 9319–9328. doi:10.1523/JNEUROSCI.0907-07.2007.

    Article  PubMed  CAS  Google Scholar 

  • Bässler, U. (1993). The femur–tibia control system of stick insects—a model system for the study of the neural basis of joint control. Brain Research. Brain Research Reviews, 18, 207–226. doi:10.1016/0165-0173(93)90002-H.

    Article  PubMed  Google Scholar 

  • Borst, A., & Haag, J. (2002). Neural networks in the cockpit of the fly. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 188, 419–437. doi:10.1007/s00359-002-0316-8.

    Article  CAS  Google Scholar 

  • Bosco, G., & Poppele, R. E. (2001). Proprioception from a spinocerebellar perspective. Physiological Reviews, 81, 539–568.

    PubMed  CAS  Google Scholar 

  • Burrows, M. (1987). Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust. The Journal of Neuroscience, 7, 1064–1080.

    PubMed  CAS  Google Scholar 

  • Büschges, A., & Pearson, K. G. (1991). Adaptive modifications in the flight system of the locust after the removal of wing proprioceptors. The Journal of Experimental Biology, 157, 313–333.

    Google Scholar 

  • Büschges, A., Ramirez, J. M., Driesang, R., & Pearson, K. G. (1992). Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation. Journal of Neurobiology, 23, 44–60. doi:10.1002/neu.480230106.

    Article  PubMed  Google Scholar 

  • Combes, D., Meyrand, P., & Simmers, J. (1999). Motor pattern specification by dual descending pathways to a lobster rhythm-generating network. The Journal of Neuroscience, 19, 3610–3619.

    PubMed  CAS  Google Scholar 

  • Ekeberg, Ö. (1993). A combined neuronal and mechanical model of fish swimming. Biological Cybernetics, 69, 363–374.

    Google Scholar 

  • Ekeberg, Ö., Wallén, P., Lansner, A., Travén, H., Brodin, L., & Grillner, S. (1991). A computer based model for realistic simulations of neural networks. Biological Cybernetics, 65, 81–90. doi:10.1007/BF00202382.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, H., Wolf, H., & Buschges, A. (2002). The locust tegula: kinematic parameters and activity pattern during the wing stroke. The Journal of Experimental Biology, 205, 1531–1545.

    PubMed  Google Scholar 

  • Haberly, L. B. (2001). Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chemical Senses, 26, 551–576. doi:10.1093/chemse/26.5.551.

    Article  PubMed  CAS  Google Scholar 

  • Hedwig, B., & Becher, G. (1998). Forewing movements and intracellular motoneurone stimulation in tethered flying locusts. The Journal of Experimental Biology, 201, 731–744.

    PubMed  Google Scholar 

  • Heukamp, U. (1984). Sensory regulation of the pleuroalar muscles in the migratory locust. Naturwissenschaften, 71, 481–482. doi:10.1007/BF004559.

    Article  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative desciption of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Hultborn, H. (2001). State-dependent modulation of sensory feedback. The Journal of Physiology, 533, 5–13. doi:10.1111/j.1469-7793.2001.0005b.x.

    Article  PubMed  CAS  Google Scholar 

  • Lachnit, H., Giurfa, M., & Menzel, R. (2004). Odour processing in honeybees: Is the whole equal to, more than, or different from the sum of its parts? In P. J. B. Slater, J. S. Rosenblatt, C. Snowdon, T. Roper, H. J. Brockmann, & M. Naguib (Eds.), Advances in the study of behavior. vol. 34. New York: Academic.

    Google Scholar 

  • Lehmann, F. O. (2004). The mechanisms of lift enhancement in insect flight. Naturwissenschaften, 91, 101–122. doi:10.1007/s00114-004-0502-3.

    Article  PubMed  CAS  Google Scholar 

  • Lockery, S. R., & Kristan Jr., W. B. (1990). Distributed processing of sensory information in the leech. II. Identification of interneurons contributing to the local bending reflex. The Journal of Neuroscience, 10, 1816–1829.

    PubMed  CAS  Google Scholar 

  • Nagayama, T., & Hisada, M. (1987). Opposing parallel connections through crayfish local nonspiking interneurons. The Journal of Comparative Neurology, 257, 347–358. doi:10.1002/cne.902570304.

    Article  PubMed  CAS  Google Scholar 

  • Osborn, C. E., & Poppele, R. E. (1992). Parallel distributed network characteristics of the DSCT. Journal of Neurophysiology, 68, 1100–1112.

    PubMed  CAS  Google Scholar 

  • Pearson, K. G. (2004). Generating the walking gait: role of sensory feedback. Progress in Brain Research, 143, 123–129. doi:10.1016/S0079-6123(03)43012-4.

    Article  PubMed  Google Scholar 

  • Pearson, K. G., & Wolf, H. (1988). Connections of hindwing tegulae with flight neurones in the locust, Locusta migratoria. The Journal of Experimental Biology, 135, 381–409.

    Google Scholar 

  • Pearson, K. G., & Ramirez, J. M. (1990). Influence of input from the forewing stretch receptors on motoneurones in flying locusts. The Journal of Experimental Biology, 151, 317–340.

    Google Scholar 

  • Pfau, H. K., & Nachtigall, W. (1981). Der Vorderflügel großer Heuschrecken als Luftkrafterzeuger. II. Zusammenspiel von Muskeln und Gelenkmechanik bei der Einstellung der Flügelgeometrie. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 142, 135–140. doi:10.1007/BF00605485.

    Article  Google Scholar 

  • Prinz, A. A., Thirumalai, V., & Marder, E. (2003). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. The Journal of Neuroscience, 23, 943–954.

    PubMed  CAS  Google Scholar 

  • Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7, 1345–1352. doi:10.1038/nn1352.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez, J. M., & Pearson, K. G. (1993). Alteration of bursting properties in interneurons during locust flight. Journal of Neurophysiology, 70, 2148–2160.

    PubMed  CAS  Google Scholar 

  • Reye, D. N., & Pearson, K. G. (1988). Entrainment of the locust central flight oscillator by wing stretch receptor stimulation. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 162, 77–89. doi:10.1007/BF01342705.

    Article  Google Scholar 

  • Robertson, R. M., & Pearson, K. G. (1985). Neural circuits in the flight system of the locust. Journal of Neurophysiology, 53, 110–128.

    PubMed  CAS  Google Scholar 

  • Robertson, R. M., & Reye, D. N. (1988). A local circuit interaction in the flight system of the locust. The Journal of Neuroscience, 8, 3929–3936.

    PubMed  CAS  Google Scholar 

  • Schmitz, J., & Stein, W. (2000). Convergence of load and movement information onto leg motoneurons in insects. Journal of Neurobiology, 42, 424–436. doi:10.1002/(SICI)1097-4695(200003)42:4<424::AID-NEU4>3.0.CO;2-0.

    Article  PubMed  CAS  Google Scholar 

  • Stein, W., & Sauer, A. (1998). Modulation of sensorimotor pathways associated with gain changes in a posture-control network of an insect. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 183, 489–501. doi:10.1007/s003590050274.

    Article  Google Scholar 

  • Stein, W., & Ausborn, J. (2004). Analog modulation of digital computation in nerve cells: Simulating the stomatogastric nervous system of the crab. Modelling and Simulation, 2004, 148–152 Abstract.

    Google Scholar 

  • Stein, W., Straub, O., Ausborn, J., Mader, W., & Wolf, H. (2008). Motor pattern selection by combinatorial code of interneuronal pathways. Journal of Computational Neuroscience, 25, 543–561. doi:10.1007/s10827-008-0093-7.

    Article  PubMed  Google Scholar 

  • Straub, O., Mader, W., Ausborn, J., & Stein, W.(2004). Motor output variability in a joint control system—a simulation study. Modelling and Simulation 2004. Eurosis-ETI. Ghent (Belgium). pp. 135–139.

  • Wilson, D. M. (1961). The central nervous control of flight in a locust. The Journal of Experimental Biology, 38, 471–490.

    Google Scholar 

  • Wolf, H. (1993). The locust tegula: significance for flight rhythm generation, wing movement control and aerodynamic force production. The Journal of Experimental Biology, 182, 229–253.

    Google Scholar 

  • Wolf, H., & Pearson, K. G. (1988). Proprioceptive input patterns elevator activity in the locust flight system. Journal of Neurophysiology, 59, 1831–1853.

    PubMed  CAS  Google Scholar 

  • Wolf, H., & Pearson, K. G. (1989). Comparison of motor patterns in the intact and deafferented flight system of the locust. III. Patterns of interneuronal activity. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 165, 61–74. doi:10.1007/BF00613800.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a scholarship from the “Studienstiftung des Deutschen Volkes” to Jessica Ausborn. The University of Ulm provided infrastructure, primarily regarding the modeling project. Particular thanks go to Wolfgang Mader who was not only an important partner for discussion but maintained and advanced the modeling tools. We thank Stefanie Rukavina for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stein.

Additional information

Action Editor: Eberhard Fetz

Electronic supplementary material

Below is the link to the electronic supplementary material

ESM 1

(160 KB DOC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ausborn, J., Wolf, H. & Stein, W. The interaction of positive and negative sensory feedback loops in dynamic regulation of a motor pattern. J Comput Neurosci 27, 245–257 (2009). https://doi.org/10.1007/s10827-009-0140-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0140-z

Keywords

Navigation