Skip to main content

Advertisement

Log in

Thalamocortical transformations of periodic stimuli: the effect of stimulus velocity and synaptic short-term depression in the vibrissa–barrel system

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Recent works on the response of barrel neurons to periodic deflections of the rat vibrissae have shown that the stimulus velocity is encoded in the corti cal spike rate (Pinto et al., Journal of Neurophysiology, 83(3), 1158–1166, 2000; Arabzadeh et al., Journal of Neuroscience, 23(27), 9146–9154, 2003). Other studies have reported that repetitive pulse stimulation produces band-pass filtering of the barrel response rate centered around 7–10 Hz (Garabedian et al., Journal of Neurophysiology, 90, 1379–1391, 2003) whereas sinusoidal stimulation gives an increasing rate up to 350 Hz (Arabzadeh et al., Journal of Neuroscience, 23(27), 9146–9154, 2003). To explore the mechanisms underlying these results we propose a simple computational model consisting in an ensemble of cells in the ventro-posterior medial thalamic nucleus (VPm) encoding the stimulus velocity in the temporal profile of their response, connected to a single barrel cell through synapses showing short-term depression. With sinusoidal stimulation, encoding the velocity in VPm facilitates the response as the stimulus frequency increases and it causes the velocity to be encoded in the cortical rate in the frequency range 20–100 Hz. Synaptic depression does not suppress the response with sinusoidal stimulation but it produces a band-pass behavior using repetitive pulses. We also found that the passive properties of the cell membrane eventually suppress the response to sinusoidal stimulation at high frequencies, something not observed experimentally. We argue that network effects not included here must be important in sustaining the response at those frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The difference between this synaptic model and averaged synaptic response models of STD (Abbott et al. 1997; Tsodyks and Markram 1997), is that release and recovery are stochastic in one case and deterministic in the other. Neglecting the stochastic nature of the transmission leads to an underestimation of the fluctuations of the synaptic current and the post-synaptic response rate (de la Rocha and Parga 2005).

References

  • Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical gain control. Science, 275, 179–80.

    Article  Google Scholar 

  • Ahissar, E., Sosnik, R., & Haidarliu, S. (2000). Transformation from temporal to rate coding in somatosensory thalamocortical system. Nature, 406, 302–306.

    Article  PubMed  CAS  Google Scholar 

  • Andermann, M. L., Ritt, J., Neimark, M. A., & Moore, C. I. (2004). Neural correlates of vibrissa resonance; band-pass and somatotopic representation of high-frequency stimuli. Neuron, 42(3), 451–63.

    Article  PubMed  CAS  Google Scholar 

  • Arabzadeh, E., Petersen, R. S., & Diamond, M. E. (2003). Encoding of whisker vibration by rat barrel cortex neurons: Implications for texture discrimination. Journal of Neuroscience, 23(27), 9146–9154.

    PubMed  CAS  Google Scholar 

  • Bazhenov, M., Rulkov, N. F., Fellous, J.-M., & Timofeev, I. (2005). Role of network dynamics in shaping spike timing reliability. Physical Review E, 72, 041903.

    Article  Google Scholar 

  • Beierlein, M., Gibson, J. R., & Connors, B. W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of Neurophysiology, 90(5), 2987–3000.

    Article  PubMed  Google Scholar 

  • Borg-Graham, L., Monier, C., & Fregnac, Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature, 393, 369–373.

    Article  PubMed  CAS  Google Scholar 

  • Brunel, N., Chance, F. S., Fourcaud, N., & Abbott, L. F. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters, 86(10), 2186–2189.

    Article  PubMed  CAS  Google Scholar 

  • Bruno, R. M., & Sakmann, B. (2006). Cortex is driven by weak but synchronously active thalamocortical synapses. Nature, 312, 1622–1627.

    CAS  Google Scholar 

  • Carandini, M., Heeger, D. J., & Senn, W. (2001). A synaptic explanation of suppression in visual cortex. Journal of Neuroscience, 22, 10053–10065.

    Google Scholar 

  • Carvell, G., & Simons, D. (1990). Biometric analyses of vibrissal tactile discrimination in the rat. Journal of Neuroscience, 10(8), 2638–2648.

    PubMed  CAS  Google Scholar 

  • Castro-Alamancos, M. A. (1997). Short term plasticity in the thalamocortical pathways: Cellular mechanisms and functional roles. Reviews in the Neurosciences, 20, 95–116.

    Google Scholar 

  • Castro-Alamancos, M. A. (2002). Different temporal processing of sensory inputs in the rat thalamus during quiescent and information processing states in vivo. Journal of Physiology (Lond), 539(2), 567–578.

    Article  CAS  Google Scholar 

  • Castro-Alamancos, M. A., & Oldford, E. (2002). Cortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses. Journal of Physiology (Lond), 541, 319–331.

    Article  CAS  Google Scholar 

  • Chance, F. S., Abbott, L., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773–782.

    Article  PubMed  CAS  Google Scholar 

  • Chance, F. S., Nelson, S. B., & Abbott, L. F. (1998). Synaptic depression and the temporal response characteristics of v1 cells. Journal of Neuroscience, 12, 4785–4799.

    Google Scholar 

  • Chung, S., Li, X., & Nelson, S. B. (2002). Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron, 34, 437–446.

    Article  PubMed  CAS  Google Scholar 

  • de la Rocha, J., Nevado, A., & Parga, N. (2002). Information transmission by stochastic synapses with short-term depression: Neural coding and optimization. Neucomputing, 44–46, 85–90.

    Article  Google Scholar 

  • de la Rocha, J., & Parga, N. (2005). Short-term synaptic depression causes a non-monotonic response to correlated stimuli. Journal of Neuroscience, 25(37), 8416–8431.

    Article  PubMed  Google Scholar 

  • Deschenes, M., Timofeeva, E., & Lavallee, P. (2003). The relay of high-frequency sensory signals in the whisker-to-barreloid pathway. Journal of Neuroscience, 23(17), 6778–6787.

    PubMed  CAS  Google Scholar 

  • Eggermont, J. J. (1999). The magnitude and phase of temporal modulation transfer functions in cat auditory cortex. Journal of Neuroscience, 19(7), 2780–2788.

    PubMed  CAS  Google Scholar 

  • Fanselow, E. E., & Nicolelis, M. A. L. (1999). Behavioral modulation of tactile responses in the rat somatosensory system. Journal of Neuroscience, 19(17), 7603–7616.

    PubMed  CAS  Google Scholar 

  • Fleidervish, I. A., Binshtok, A. M., & Gutnick, M. J. (1998). Functionally distinct NMDA receptors mediate horizontal connectivity within layer 4 of mouse barrel cortex. Neuron, 21(5), 1055–1065.

    Article  PubMed  CAS  Google Scholar 

  • Garabedian, C. E., Jones, S. R., Merzenich, M. M., Dale, A., & Moore, C. I. (2003). Band-pass response properties of rat si neurons. Journal of Neurophysiology, 90, 1379–1391.

    Article  PubMed  Google Scholar 

  • Gerstner, W. (2000). Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking. Neural Computation, 12(1), 43–89.

    Article  PubMed  CAS  Google Scholar 

  • Gerstner, W., & Kistler, W. (2002). Spiking neuron models: Single neuron, populations, plasticity. Cambridge University Press.

  • Gil, Z., Connors, B. W., & Amitai, Y. (1999). Efficacy of thalamocortical and intracortical synaptic connections: Quanta, innervation, and reliability. Neuron, 23, 385–397.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, J., & Brown, P. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. Journal of Neurophysiology, 32, 613–636.

    PubMed  CAS  Google Scholar 

  • Golomb, D., Ahissar, E., & Kleinfeld, D. (2006). Coding of stimulus frequency by latency in thalamic networks through the interplay of GABAB-mediated feedback and stimulus shape. Journal of Neurophysiology, 95(3), 1735–1750.

    Article  PubMed  CAS  Google Scholar 

  • Hartings, J. A., & Simons, D. J. (1998). Thalamic relay of afferent responses to 1- to 12-Hz whisker stimulation in the rat. Journal of Neurophysiology, 80(2), 1016–1019.

    PubMed  CAS  Google Scholar 

  • Hartings, J. A., Temereanca, S., & Simons, D. J. (2003). Processing of periodic whisker deflections by neurons in the ventroposterior medial and thalamic reticular nuclei. Journal of Neurophysiology, 90(5), 3087–3094.

    Article  PubMed  Google Scholar 

  • Hirsch, J. A., Alonso, J.-M., Reid, R. C., & Martinez, L. M. (1998). Synaptic integration in striate cortical simple cells. Journal of Neuroscience, 18, 9517–9528.

    PubMed  CAS  Google Scholar 

  • Hutcheon, B., & Yarom, Y. (2000). Resonance, oscillations and the intrinsic frequency preferences of neurons. Trends in Neuroscience, 23(5), 216–222.

    Article  CAS  Google Scholar 

  • Khatri, V., Hartings, J. A., & Simons, D. J. (2004). Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity. Journal of Neurophysiology, 92(6), 3244–3254.

    Article  PubMed  CAS  Google Scholar 

  • Koch, C. (1999). Biophysics of computation: Information processing in single neurons. Oxford University Press.

  • Land, P. W., Buffer, S. A., & Yaskosky, J. D. (1995). Barreloids in adult rat thalamus: Three-dimensional architecture and relationship to somatosensory cortical barrels. The Journal of Comparative Neurology, 355(4), 573–588.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein, S., Carvell, G., & Simons, D. (1990). Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. Somatosensory & Motor Research, 7, 47–65.

    CAS  Google Scholar 

  • Lin, K. K., Shea-Brown, E., & Young, L.-S. (2007). Reliability of coupled oscillators I: Two-oscillator systems. Submitted to Journal of Nonlinear Science. Avaliable online: http://arxiv.org/abs/0708.3061.

  • Lu, T., Liang, L., & Wang, X. (2001). Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nature Neuroscience, 4, 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  • Magleby, K. L. (1987). Short-term changes in synaptic efficacy. In G. Edelman, W. Gall, & W. Cowan (Eds.), Synaptic function (pp. 21–56). New York: Wiley.

    Google Scholar 

  • Matveev, V., & Wang, X.-J. (2000). Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: A computational study. Journal of Neuroscience, 20, 1575–1588.

    PubMed  CAS  Google Scholar 

  • Moore, C. I. (2004). Frequency-dependent processing in the vibrissa sensory system. Journal of Neurophysiology, 91, 2390–2399.

    Article  PubMed  Google Scholar 

  • Neimark, M. A., Andermann, M. L., Hopfield, J. J., & Moore, C. I. (2003). Vibrissa resonance as a transduction mechanism for tactile encoding. Journal of Neuroscience, 23(16), 6499–6509.

    PubMed  CAS  Google Scholar 

  • Pinto, D. J., Brumberg, J. C., & Simons, D. J. (2000). Circuit dynamics and coding strategies in rodent somatosensory cortex. Journal of Neurophysiology, 83(3), 1158–1166.

    PubMed  CAS  Google Scholar 

  • Pinto, D. J., Hartings, J. A., Brumberg, J. C., & Simons, D. J. (2003). Cortical damping: Analysis of thalamocortical response transformations in rodent barrel cortex. Cerebral Cortex, 13, 33–44.

    Article  PubMed  Google Scholar 

  • Ricciardi, L. M. (1977). Diffusion processes and related topics in biology. Berlin: Springer.

    Google Scholar 

  • Rieke, F., Warland, D., de Ruyter van Steveninck, R. R., & Bialek, W. (1996). Spikes: Exploring the neural code. Cambridge, MA: MIT Press.

    Google Scholar 

  • Shoykhet, M., Doherty, D., & Simons, D. (2000). Coding of deflection velocity and amplitude by whisker primary afferent neurons: Implications for higher level processing. Somatosensory & Motor Research, 17, 171–18.

    Article  CAS  Google Scholar 

  • Simons, D. J. (1978). Response properties of vibrissa units in rat si somatosensory neocortex. Journal of Neurophysiology, 41, 798–820.

    PubMed  CAS  Google Scholar 

  • Sosnik, R., Haidarliu, S., & Ahissar, E. (2001). Temporal frequency of whisker movement. I. Representations in brain stem and thalamus. Journal of Neurophysiology, 86(1), 339–353.

    PubMed  CAS  Google Scholar 

  • Stratford, K., Tarczy-Hornoch, K., Martin, K., Bannister, N., & Jack, J. (1996). Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature, 382, 258–261.

    Article  PubMed  CAS  Google Scholar 

  • Svirskis, G., & Rinzel, J. (2003). Influence of subthreshold nonlinearities on signal-to-noise ratio and timing precision for small signals in neurons: Minimal model analysis. Network: Computation in Neural Systems, 14(1), 137–150.

    Article  Google Scholar 

  • Swadlow, H. (1989). Efferent neurons and suspected interneurons in s1 vibrissa cortex of the awake rabbit: Evidence from cross-correlation, microstimulation, and latencies to peripheral sensory stimulation. Journal of Physiology, 62, 288–308.

    CAS  Google Scholar 

  • Swadlow, H. A., & Gusev, A. G. (2001). The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nature Neuroscience, 4(4), 401–408.

    Article  Google Scholar 

  • Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94, 719–723.

    Article  PubMed  CAS  Google Scholar 

  • Varga, C., Sik, A., Lavallee, P., & Deschenes, M. (2002). Dendroarchitecture of relay cells in thalamic barreloids: A substrate for cross-whisker modulation. Journal of Neuroscience, 22(14), 6186–6194.

    PubMed  CAS  Google Scholar 

  • Vere-Jones, D. (1966). Simple stochastic models for the release of quanta of transmitter from a nerve terminal. Australian Journal of Statistics, 8, 53–63.

    Article  Google Scholar 

  • Wang, X.-J. (1999). Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons. Neuroscience, 89(2), 347–362.

    Article  PubMed  CAS  Google Scholar 

  • Welker, W. (1964). Analysis of sniffing of the albino rat. Behavior, 12, 223–244.

    Article  Google Scholar 

  • Welker,W. I., Johnson Jr., J. I., & Pubols Jr., B. H. (1964). Some morphological and physiological characteristics of the somatic sensory system in raccoons. American Zoologist, 136, 75–94.

    Google Scholar 

  • Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research presented in this manuscript was supported by a grant from the Spanish Ministry of Education and Science (FIS 2006-09294). JR was also funded by a Postdoctoral Fellowship from the same institution. We thank Miguel Maraval and Alfonso Renart for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime de la Rocha.

Additional information

Action Editor: Xiao-Jing Wang

Appendices

Appendix 1

1.1 Values of the parameters

We take the synaptic parameters from in vitro and in vivo studies. In agreement with in vitro data obtained by Gil et al. (1999) we take as mean quantal EPSP size is J/C m  ≃ 0.35 mV with a coefficient of variation Δ ≃ 0.25; mean number of release sites M = 7; release probability U = 0.8. In the absence of any spontaneous activity in the thalamus these values produce a mean EPSP amplitude < PSP > = M U J/C m  = 1.96 mV. Experiments in anesthetized and sedated rats have recently reported smaller mean amplitudes which depend on the animal state: for anesthetized animals mean = 1.94 mV (median 1.3 mV) whereas for sedated animals the mean = 0.49 mV (median 0.24 mV; Bruno and Sakmann 2006). These variation was accompanied with a difference in the spontaneous thalamic rate (ν 0 = 1.0 Hz for anesthetized and 5.4 Hz for sedated (Bruno and Sakmann 2006)) suggesting that TC synapses are continuously depressed in vivo (Castro-Alamancos 2002; Bruno and Sakmann 2006). This continuous depression is expected to be larger in awake animals were spontaneous thalamic firing is even higher (~10 Hz; Fanselow and Nicolelis 1999; Swadlow and Gusev 2001). Finally, a different study in anesthetized rats has shown that the depressed TC EPSP amplitude recovers to rest values exponentially with a time constant τ v ~5 s (Chung et al. 2002). Had we used this value, which is almost two orders of magnitude larger than that measured in in vitro recordings of TC synapses in the visual system (Stratford et al. 1996), and spontaneous thalamic rates like those found in vivo (~5–10 Hz), we would have obtained an average TC EPSP lower than 0.05 mV. We therefore set τ v  = 300 ms to reproduce average TC EPSP like those found in (Bruno and Sakmann 2006) when the spontaneous thalamic rate was 5 Hz.

We consider N = 85 thalamic neurons impinging onto the single target barrel cell based on an estimate of 200 cells per barreloid (Land et al. 1995; Varga et al. 2002) and a TC convergence ratio of 0.43 (Bruno and Sakmann 2006). Other parameters of the cortical cell model are: τ m  = 1 − 10 ms, θ = 10–17 mV, H = 6–10 mV, τ ref = 2 ms, C m  = 100 pF and E L  = 0. Background parameters: M E  = 3, M I  = 6, J E /C m  = 0.2 mV, J I /C m  = − 0.4 mV, U E  = U I  = 0.4, \(\nu_E=5\;\textrm{ms}^{-1}\), \(\nu_I=1\;\textrm{ms}^{-1}\). The excitatory background rate being five times larger than the inhibitory background rate, reflects the approximate ratio of one inhibitory cell every five excitatory cells found in the cortex.

Appendix 2

1.1 The temporal contrast

The temporal contrast is defined as (Pinto et al. 2000):

$$\textrm{Temporal Contrast} \!=\! \frac{40\% \textrm{of spikes per deflection}}{\textrm{time to produce 40\%}}$$
(14)

It measures in spiking rate units the mean firing rate of the early part of the response. Parameterizing the thalamic CPSTH with a Gamma function given by:

$$G(t) = \frac{C}{\Sigma} \, t \, e^{-t / \Sigma + 1}$$
(15)

the temporal contrast can be evaluated easily: The numerator equals 0.4 e C Σ, while the denominator is obtained by solving the equation:

$$\int_0^t G(z) {\rm d} z = 0.4 \, e \, C \, \Sigma$$
(16)

which performing the integral becomes

$$\frac{t}{\Sigma}+\ln(1-0.4) = \ln\left(\frac{t}{\Sigma}+1\right) \;\;,$$
(17)

which yields to t = 1.37 Σ, giving finally:

$$\textrm{Temporal Contrast} = \frac{0.4 \, e \, C \,\Sigma}{1.37\,\Sigma}\simeq 0.8\,C$$
(18)

that is, it is simply proportional to the Gamma amplitude. Now, modeling the temporal contrast dependence on the velocity obtained by Pinto et al. (2000) using this Gamma parameterization implies that as the stimulus velocity increases the VPm response has to vary (1) increasing its amplitude C and (2) decreasing Σ so that the product remains fixed. Doing so, the temporal contrast depends on the velocity while the spike count is independent of it.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Rocha, J., Parga, N. Thalamocortical transformations of periodic stimuli: the effect of stimulus velocity and synaptic short-term depression in the vibrissa–barrel system. J Comput Neurosci 25, 122–140 (2008). https://doi.org/10.1007/s10827-007-0068-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0068-0

Keywords

Navigation