Skip to main content
Log in

Influence of frequency and temperature on the mechanisms of nerve conduction block induced by high-frequency biphasic electrical current

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The influences of stimulation frequency and temperature on mechanisms of nerve conduction block induced by high-frequency biphasic electrical current were investigated using a lumped circuit model of the myelinated axon based on Schwarz and Eikhof (SE) equations. The simulation analysis showed that a temperature–frequency relationship was determined by the axonal membrane dynamics (i.e. how fast the ion channels can open or close.). At a certain temperature, the axonal conduction block always occurred when the period of biphasic stimulation was smaller than the action potential duration (APD). When the temperature decreased from 37 to 15°C, the membrane dynamics slowed down resulting in an APD increase from 0.4 to 2.4 ms accompanied by a decrease in the minimal blocking frequency from 4 to 0.5 kHz. The simulation results also indicated that as the stimulation frequency increased the mechanism of conduction block changed from a cathodal/anodal block to a block dependent upon continuous activation of potassium channels. Understanding the interaction between the minimal blocking frequency and temperature could promote a better understanding of the mechanisms of high frequency induced axonal conduction block and the clinical application of this method for blocking nerve conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agnew, W. F., & McCreery, D. H. (1990). Neural prostheses: Fundamental studies. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2004). Potassium model for slow (2–3 Hz) in vivo neocotical paroxysmal oscillations. Journal of Neurophysiology, 92, 1116–1132.

    Article  PubMed  CAS  Google Scholar 

  • Bhadra, N., Bhadra, N., Kilgore, K. L., & Gustafson, K. J. (2006). High frequency electrical conduction block of pudendal nerve. Journal of Neural Engineering, 3, 180–187.

    Article  PubMed  Google Scholar 

  • Bhadra, N., & Kilgore, K. L. (2005). High-frequency electrical conduction block of mammalian peripheral motor nerve. Muscle Nerve, 32, 782–790.

    Article  PubMed  Google Scholar 

  • Bikson, M., Lian, J., Hahn, P. J., Stacey, W. C., Sciortino, C., & Durand, D. M. (2001). Suppression of epileptiform activity by high frequency sinusoidal fields in rat hippocampal slices. Journal of Physiology (London), 531, 181–191.

    Article  Google Scholar 

  • Bowman, B. R., & McNeal, D. R. (1986). Response of single alpha motoneurons to high frequency pulse train: Firing behavior and conduction block phenomenon. Applied Neurophysiology, 49, 121–138.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, W. E., & Diprima, R. C. (1997). Elementary differential equations and boundary value problems (6th ed.). New York: Wiley.

  • Chiu, S. Y., Ritchie, J. M., Rogart, R. B., & Stagg D. (1979). A quantitative description of membrane currents in rabbit myelinated nerve. Journal of Physiology (London), 292, 149–166.

    CAS  Google Scholar 

  • Elwassif, M. M., Kong, Q., Vazquez, M., & Bikson M. (2006). Bio-heat transfer model of deep brain stimulation-induced temperature changes. Journal of Neural Engineering, 3, 306–315.

    Article  PubMed  Google Scholar 

  • Frankenhaeuser, B., & Huxley, A. F. (1964). The action potential in the myelinated nerve fibre of Xenopus Laevis as computed on the basis of voltage clamp data. Journal of Physiology (London), 171, 302–315.

    CAS  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London), 117, 500–544.

    CAS  Google Scholar 

  • Kager, H., Wadman, W. J., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.

    PubMed  CAS  Google Scholar 

  • Kager, H., Wadman, W. J., & Somjen, G. G. (2002). Condition for the triggering of spreading depression studied with computer simulations. Journal of Neurophysiology, 88, 2700–2712.

    Article  PubMed  CAS  Google Scholar 

  • Kilgore, K. L., & Bhadra N. (2004). Nerve conduction block utilising high-frequency alternating current. Medical & Biological Engineering & Computing, 42, 394–406.

    Article  CAS  Google Scholar 

  • McIntyre, C. C., Richardson, A. G., & Grill, W. M. (2002). Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87, 995–1006.

    PubMed  Google Scholar 

  • Nashold, B. S., Goldner, J. L., Mullen, J. B., & Bright, D. S. (1982). Long-term pain control by direct peripheral-nerve stimulation. Journal of Bone and Joint Surgery, 64A, 1–10.

    Google Scholar 

  • Rattay, F., & Aberham M. (1993). Modeling axon membranes for functional electrical stimulation. IEEE Transactions on Biomedical Engineering, 40, 1201–1209.

    Article  PubMed  CAS  Google Scholar 

  • Reboul, J., & Rosenblueth A. (1939). The action of alternating currents upon the electrical excitability of nerve. American Journal of Physiology, 125, 205–215.

    Google Scholar 

  • Renganathan, M., Cummins, T. R., & Waxman, S. G. (2001). Contribution of Nav 1.8 sodium channels to action potential electrogenesis in DRG neurons. Journal of Neurophysiology, 86, 629–640.

    PubMed  CAS  Google Scholar 

  • Roper, J., & Schwarz, J. R. (1989). Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. Journal of Physiology (London), 416, 93–110.

    CAS  Google Scholar 

  • Rosenblueth, A., & Reboul J. (1939). The blocking and deblocking effects of alternating currents on nerve. American Journal of Physiology, 125, 251–264.

    Google Scholar 

  • Schwarz, J. R., & Eikhof G. (1987). Na currents and action potentials in rat myelinated nerve fibres at 20 and 37°C. Pflugers Archiv, 409, 569–577.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, J. R., Glassmeier, G., Cooper, E. C., Kao, T. C., Nodera, H., Tabuena, D., et al. (2006). KCNQ channels mediate Iks, a slow K+ current regulating excitability in the rat node of Ranvier. Journal of Physiology, 573, 17–34.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, J. R., Reid, G., & Bostock H. (1995). Action potentials and membrane currents in the human node of Ranvier. Pflugers Archiv, 430, 283–292.

    Article  PubMed  CAS  Google Scholar 

  • Tai, C., de Groat, W. C., & Roppolo, J. R. (2005a). Simulation analysis of conduction block in unmyelinated axons induced by high-frequency biphasic electrical currents. IEEE Transactions on Biomedical Engineering, 52, 1323–1332.

    Article  Google Scholar 

  • Tai, C., de Groat, W. C., & Roppolo, J. R. (2005b). Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin–Huxley model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, 415–422.

    Article  Google Scholar 

  • Tai, C., Roppolo, J. R., & de Groat, W. C. (2004). Block of external urethral sphincter contraction by high frequency electrical stimulation of pudendal nerve. Journal of Urology, 172, 2069–2072.

    Article  PubMed  Google Scholar 

  • Tai, C., Roppolo, J. R., & de Groat, W. C. (2005c). Response of external urethral sphincter to high frequency biphasic electrical stimulation of pudendal nerve. Journal of Urology, 174, 782–786.

    Article  Google Scholar 

  • Tanner, J. A. (1962). Reversible blocking of nerve conduction by alternating-current excitation. Nature, 195, 712–713.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, R. P., & Andrews, B. J. (2005). Localized electrical nerve blocking. IEEE Transactions on Biomedical Engineering, 52, 362–370.

    Article  PubMed  Google Scholar 

  • Zhang, X., Roppolo, J. R., de Groat, W. C., & Tai C. (2006a). Simulation analysis of conduction block in myelinated axons induced by high-frequency biphasic rectangular pulses. IEEE Transactions on Biomedical Engineering, 53, 1433–1436.

    Article  Google Scholar 

  • Zhang, X., Roppolo, J. R., de Groat, W. C., Tai C (2006b) Mechanism of nerve conduction block induced by high-frequency biphasic electrical currents. IEEE Transactions on Biomedical Engineering, 53, 2445–2454.

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the NIH under grants 1R01-DK-068566-01 and 1R01-NS-051671-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfeng Tai.

Additional information

Action Editor: John R. Huguenard

Appendix

Appendix

The ionic current I i,,n at nth node is described as:

$$ \begin{array}{*{20}c} {I_{{i,n}} = i_{{Na}} + i_{K} + i_{L} } \\ {i_{{Na}} = P_{{Na}} m^{3} h\frac{{EF^{2} }} {{RT}}\frac{{[{\text{Na}}]_{0} - [{\text{Na}}]_{i} e^{{{EF} \mathord{\left/ {\vphantom {{EF} {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} }} {{1 - e^{{{EF} \mathord{\left/ {\vphantom {{EF} {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} }}} \\ {i_{K} = P_{K} n^{2} \frac{{EF^{2} }} {{RT}}\frac{{[K]_{0} - [K]_{i} e^{{{EF} \mathord{\left/ {\vphantom {{EF} {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} }} {{1 - e^{{{EF} \mathord{\left/ {\vphantom {{EF} {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} }}} \\ {i_{L} = g_{L} (V_{n} - V_{L} )} \\ {E = V_{n} + V_{{{\text{rest}}}} } \\ \end{array} $$

where P Na (0.00328 cm/s) and P K (0.000134 cm/s) are the ionic permeabilities for sodium and potassium currents, respectively; g L (86 kΩ−1 cm−2) is the maximum conductance for leakage current. VL (0 mV) is the reduced equilibrium membrane potential for leakage ions, in which the resting membrane potential V rest (−78 mV) has been subtracted. [Na] i (8.71 mmol/l) and [Na] o (154 mmol/l) are sodium concentrations inside and outside the axon membrane. [K] i (155 mmol/l) and [K] o (5.9 mmol/l) are potassium concentrations inside and outside the axon membrane. F (96,485 C/mole) is Faraday constant. R (8,314.4 mJ K−1 mol−1) is gas constant. m, h and n are dimensionless variables, whose values always change between 0 and 1. m and h represent activation and inactivation of sodium channels, whereas n represents activation of potassium channels.

The evolution equations for m, h and n are the following:

$$ \begin{array}{*{20}c} {{dm} \mathord{\left/ {\vphantom {{dm} {dt}}} \right. \kern-\nulldelimiterspace} {dt} = {\left[ {\alpha _{m} {\left( {1 - m} \right)} - \beta _{m} m} \right]}k_{m} } \\ {{dh} \mathord{\left/ {\vphantom {{dh} {dt}}} \right. \kern-\nulldelimiterspace} {dt} = {\left[ {\alpha _{h} {\left( {1 - h} \right)} - \beta _{h} h} \right]}k} \\ {{dn} \mathord{\left/ {\vphantom {{dn} {dt}}} \right. \kern-\nulldelimiterspace} {dt} = {\left[ {\alpha _{n} {\left( {1 - n} \right)} - \beta _{n} n} \right]}k} \\ \end{array} $$

and

$$ \begin{array}{*{20}c} {\alpha _{m} = \frac{{1.87{\left( {V_{n} - 25.41} \right)}}} {{1 - \exp {\left( {\frac{{25.41 - V_{n} }} {{6.06}}} \right)}}}} \\ {\beta _{m} = \frac{{3.97{\left( {21 - V_{n} } \right)}}} {{1 - \exp {\left( {\frac{{V_{n} - 21}} {{9.41}}} \right)}}}} \\ {\alpha _{h} = - \frac{{0.55{\left( {V_{n} + 27.74} \right)}}} {{1 - \exp {\left( {\frac{{V_{n} + 27.74}} {{9.06}}} \right)}}}} \\ {\beta _{h} = \frac{{22.6}} {{1 + \exp {\left( {\frac{{56 - V_{n} }} {{12.5}}} \right)}}}} \\ {\alpha _{n} = \frac{{0.13{\left( {V_{n} - 35} \right)}}} {{1 - \exp {\left( {\frac{{35 - V_{n} }} {{10}}} \right)}}}} \\ {\beta _{n} = \frac{{0.32{\left( {10 - V_{n} } \right)}}} {{1 - \exp {\left( {\frac{{V_{n} - 10}} {{10}}} \right)}}}} \\ {k_{m} = 2.2^{{{{\left( {T - 310} \right)}} \mathord{\left/ {\vphantom {{{\left( {T - 310} \right)}} {10}}} \right. \kern-\nulldelimiterspace} {10}}} } \\ {k = 3^{{{{\left( {T - 310} \right)}} \mathord{\left/ {\vphantom {{{\left( {T - 310} \right)}} {10}}} \right. \kern-\nulldelimiterspace} {10}}} } \\ \end{array} $$

where T is the temperature used in the simulation study (in °K). The initial values for m, h and n (when V n  = 0 mV) are 0.0077, 0.76 and 0.0267, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Shen, B., Roppolo, J.R. et al. Influence of frequency and temperature on the mechanisms of nerve conduction block induced by high-frequency biphasic electrical current. J Comput Neurosci 24, 195–206 (2008). https://doi.org/10.1007/s10827-007-0050-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0050-x

Keywords

Navigation