Skip to main content
Log in

Absorption coefficient of a DMS ellipsoid quantum dot with Rashba spin–orbit interaction

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We study the absorption coefficient of a diluted magnetic semiconductor ellipsoidal quantum dot with Rashba spin–orbit coupling. The Schrödinger equation for a one-electron ellipsoidal quantum dot was solved within the framework of the effective mass approximation method. The wave vector and electron energy found during the solution were used to find an expression for the absorption coefficient. The article examines intraband optical transitions relative to changes in external parameters. The decrease in the absorption coefficient as a function of the energy of the incident photon was studied at different values of the magnetic field, the Rashba parameter, temperature, concentration of Mn atoms and the radius of the ellipsoid. According to the results obtained, these parameters significantly affect intraband optical transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Dresselhaus, G.: Spin–orbit Coupling Effects in Zinc Blende Structures. Phys. Rev. 100(2), 580–586 (1955). https://doi.org/10.1103/PhysRev.100.580

    Article  Google Scholar 

  2. Rashba, E.: Properties of semiconductors with an extremum loop. I. Cyclotron and c ombinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  3. Bychkov, Y.A., Rashba, É.I.: Properties of a 2D electron gas with lifted spectral degeneracy. JETP let. 39(2), 78 (1984)

    Google Scholar 

  4. Nitta, J., Akazaki, T., Takayanagi, H., Enoki, T.: Gate control of spin–orbit interaction in an inverted In 0.53 Ga 0.47 As/In 0.52 Al 0.48 As Heterostructure. Phys. Rev. Lett. 78(7), 1335–1338 (1997). https://doi.org/10.1103/PhysRevLett.78.1335

    Article  Google Scholar 

  5. Nakamura, H., Koga, T., Kimura, T.: Experimental evidence of cubic Rashba effect in an inversion-symmetric oxide. Phys. Rev. Lett. 108(20), 206601 (2012). https://doi.org/10.1103/PhysRevLett.108.206601

    Article  Google Scholar 

  6. Ast, C.R., et al.: Giant spin splitting through surface alloying. Phys. Rev. Lett. 98(18), 186807 (2007). https://doi.org/10.1103/PhysRevLett.98.186807

    Article  Google Scholar 

  7. Ishizaka, K., et al.: Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater 10(7), 521–526 (2011). https://doi.org/10.1038/nmat3051

    Article  Google Scholar 

  8. Moser, J., Matos-Abiague, A., Schuh, D., Wegscheider, W., Fabian, J., Weiss, D.: Tunneling anisotropic magnetoresistance and Spin–orbit Coupling in Fe/GaAs/Au tunnel junctions. Phys. Rev. Lett. 99(5), 056601 (2007). https://doi.org/10.1103/PhysRevLett.99.056601

    Article  Google Scholar 

  9. Manchon, A., Koo, H.C., Nitta, J., Frolov, S.M., Duine, R.A.: New perspectives for Rashba spin–orbit coupling. Nat. Mater 14(9), 871–882 (2015). https://doi.org/10.1038/nmat4360

    Article  Google Scholar 

  10. Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56(7), 665–667 (1990). https://doi.org/10.1063/1.102730

    Article  Google Scholar 

  11. Furdyna, J.K.: Diluted magnetic semiconductors. J. Appl. Phys. 64(4), R29–R64 (1988). https://doi.org/10.1063/1.341700

    Article  Google Scholar 

  12. Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum dot heterostructures. Wiley, Chichester (1999)

    Google Scholar 

  13. Cho, A.: Recent developments in molecular beam epitaxy (MBE). J. Vac. Sci. Technol. 16(2), 275–284 (1979)

    Article  Google Scholar 

  14. Barnham, K., Vvedensky, D.: Low-dimensional semiconductor structures: fundamentals and device applications, 1st edn. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  15. Vorobyev, L.E., Ivchenko, E.I., Firsov, D.A., Shalygin, V.A.: Optical Property of Nanostructures. Nauka, Saint Petersburg (2001)

    Google Scholar 

  16. Liu, C.-H., Xu, B.-R.: Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot. Phys. Lett. A 372(6), 888–892 (2008). https://doi.org/10.1016/j.physleta.2007.08.046

    Article  Google Scholar 

  17. Fakkahi, A., et al.: Optical absorption coefficients of a single electron in a multilayer spherical quantum dot with a Kratzer-like confinement potential. Res. Opt. 13, 100553 (2023). https://doi.org/10.1016/j.rio.2023.100553

    Article  Google Scholar 

  18. Jaouane, M., Sali, A., Ezzarfi, A., Fakkahi, A., Arraoui, R.: Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots. Physica E 127, 114543 (2021). https://doi.org/10.1016/j.physe.2020.114543

    Article  Google Scholar 

  19. Grundmann, M., Stier, O., Bimberg, D.: InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52(16), 11969–11981 (1995). https://doi.org/10.1103/PhysRevB.52.11969

    Article  Google Scholar 

  20. Cantele, G., Piacente, G., Ninno, D., Iadonisi, G.: Optical anisotropy of ellipsoidal quantum dots. Phys. Rev. B (2002). https://doi.org/10.1103/physrevb.66.113308

    Article  Google Scholar 

  21. Zhu, J.-L.: Spectrum of donor states in an ellipsoidal quantum dot. Phys. Lett. A 269(5–6), 343–347 (2000). https://doi.org/10.1016/s0375-9601(00)00286-3

    Article  MathSciNet  Google Scholar 

  22. León-González, J.C., Toscano-Negrette, R.G., Vinasco, J.A., Morales, A.L., Mora-Ramos, M.E., Duque, C.A.: Influence of a non-resonant intense laser and structural defect on the electronic and optical properties of a gaas quantum ring under inversely quadratic potential. Condens. Matter 8(2), 52 (2023). https://doi.org/10.3390/condmat8020052

    Article  Google Scholar 

  23. Galitskiy, V.M., Karnakov, B.M., Kogan, V.I.: Problems in quantum mechanics, 2nd edn. Nauka, Moscow (1992)

    Google Scholar 

  24. Babanlı, A., Balcı, M., Sabyrov, V.: Optical properties of an ellipsoidal quantum dot with a diluted magnetic semiconductor structure. J. Magn. Magn. Mater. 586, 171146 (2023). https://doi.org/10.1016/j.jmmm.2023.171146

    Article  Google Scholar 

  25. Babanlı, A.M., Uçar, O.: Magnetoresistance of electrons in quantum ring with Rashba spin–orbit interaction. Low Temp. Phys. 47(10), 849–853 (2021). https://doi.org/10.1063/10.0006065

    Article  Google Scholar 

  26. Gumber, S., Bhattacherjee, A.B., Jha, P.K.: Spin transport in a Rashba-coupled two-dimensional quantum ring: an analytical model. Phys. Rev. B 98(20), 205408 (2018). https://doi.org/10.1103/PhysRevB.98.205408

    Article  Google Scholar 

  27. Anselm, A.I.: Introduction to semiconductor theory. Prenctice-Hall, Moscow (1981)

    Google Scholar 

  28. Gradshteĭn, I.S., Zwillinger, D.: Table of integrals, series, and products, 8th edn. Elsevier, Academic Press is an imprint of Elsevier, Amsterdam (2015)

    Google Scholar 

  29. Harper, R.L., et al.: Excited confined quantum states in CdMnTe-CdTe superlattices. J. Appl. Phys. 65(2), 624–628 (1989). https://doi.org/10.1063/1.343094

    Article  Google Scholar 

  30. Sirenko, A.A., et al.: Electron and hole g factors measured by spin-flip Raman scattering in CdTe/Cd1–x Mgx Te single quantum wells. Phys. Rev. B 56(4), 2114–2119 (1997). https://doi.org/10.1103/PhysRevB.56.2114

    Article  Google Scholar 

  31. Ilchuk, H., Zmiiovska, E., Petrus, R., Semkiv, I., Lopatynskyi I., Kashuba, A.: Optical properties of CdMnTe film: experimental and theoretical aspect s (2020)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

A.B., M.B., M.O., G.O and V.S. wrote the main manuscript text. V.S. prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to A. M. Babanlı.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babanlı, A.M., Balcı, M., Ovezov, M. et al. Absorption coefficient of a DMS ellipsoid quantum dot with Rashba spin–orbit interaction. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02174-5

Keywords

Navigation