Skip to main content
Log in

ANN-based estimation of dispersion characteristics of slotted photonic crystal waveguides

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, the dispersion characteristics of slotted photonic crystal waveguides (SPCWs) have been estimated for any arbitrary set of structural parameters using machine learning-based artificial neural network (ANN). The machine learning-based technique yields faster solutions of the three-dimensional eigenvalue equations, which otherwise require substantial time using the conventional plane wave expansion (PWE)-based numerical simulations. Most importantly, the novel contribution of the work lies in estimating the structural parameters of the SPCWs from the given specifications of the dispersion characteristics through an inverse computation. A simple feed-forward neural network has been employed for both the forward and inverse estimations. The computation performances using both the ANN model and PWE simulations are analyzed and compared. The research offers significant implications for the field of photonics. By employing machine learning techniques, particularly ANNs, researchers and engineers can swiftly and efficiently analyze the dispersion properties of SPCWs, facilitating rapid prototyping and optimization of photonic devices. Additionally, the capability to infer structural parameters from desired dispersion characteristics streamlines the design process, potentially leading to the development of customized waveguides tailored to specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

None.

References

  1. Silicon photonics market size and share analysis growth trends and forecasts(2023-2028). available online: https://www.mordorintelligence.com/industry-reports/silicon-photonics-market (2023)

  2. Jalali, B., Fathpour, S.: Silicon photonics. J. Lightwave Technol. 24(12), 4600–4615 (2006)

    Article  Google Scholar 

  3. Saghaei, H., Van, V.: Broadband mid-infrared supercontinuum generation in dispersion-engineered silicon-on-insulator waveguide. J. Opt. Soc. Am. B 36(2), 193–202 (2019)

    Article  Google Scholar 

  4. Saghaei, H.: Dispersion-engineered microstructured optical fiber for mid-infrared supercontinuum generation. Appl. Opt. 57(20), 5591–5598 (2018)

    Article  Google Scholar 

  5. Aliee, M., Mozaffari, M.H., Saghaei, H.: Dispersion-flattened photonic quasicrystal optofluidic fiber for telecom C band operation. Photon. Nanostructures-Fundam. Appl. 40, 100797 (2020)

    Article  Google Scholar 

  6. Saghaei, H., Elyasi, P., Shastri, B.J.: Sinusoidal and rectangular Bragg grating filters: design, fabrication, and comparative analysis. J. Appl. Phys. 132(6), 064501 (2022)

    Article  Google Scholar 

  7. Diouf, M., Salem, A.B., Cherif, R., Saghaei, H., Wague, A.: Super-flat coherent supercontinuum source in as 38.8 se 6.12 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl. Opt. 56(2), 163–169 (2017)

    Article  Google Scholar 

  8. Naghizade, S., Didari-Bader, A., Saghaei, H.: Ultra-fast tunable optoelectronic 2-to-4 binary decoder using graphene-coated silica rods in photonic crystal ring resonators. Opt. Quant. Electron. 54(11), 767 (2022)

    Article  Google Scholar 

  9. Nayyeri Raad, A., Saghaei, H., Mehrabani, Y.S.: An optical 2-to-4 decoder based on photonic crystal x-shaped resonators covered by graphene shells. Opt. Quant. Electron. 55(5), 452 (2023)

    Article  Google Scholar 

  10. Ebnali-Heidari, M., Dehghan, F., Saghaei, H., Koohi-Kamali, F., Moravvej-Farshi, M.: Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. J. Mod. Opt. 59(16), 1384–1390 (2012)

    Article  Google Scholar 

  11. Datta, T., Sen, M.: Characterization of slotted photonic crystal waveguide and its application in nonlinear optics. Superlattices Microstruct. 109, 107–116 (2017)

    Article  Google Scholar 

  12. Sen, M., Datta, T.: Slotted photonic crystal waveguide: an effective platform for efficient nonlinear photonic applications. In: Photonics, Plasmonics and Information Optics, pp. 135–171. CRC Press, USA (2021)

    Chapter  Google Scholar 

  13. Pradhan, A.K., Sen, M., Datta, T.: Raman mediated solitonic pulse compression. JOSA B 39(6), 1686–1693 (2022)

    Article  Google Scholar 

  14. Pradhan, A.K., Sen, M., Datta, T.: Raman based on-chip photonic quantizers for ADCs. JOSA B 40(5), 1076–1082 (2023)

    Article  Google Scholar 

  15. Datta, T., Sen, M.: Led pumped micron-scale all-silicon Raman amplifier. Superlattices Microstruct. 110, 273–280 (2017)

    Article  Google Scholar 

  16. Pradhan, A.K., Sen, M.: An integrable all-silicon slotted photonic crystal Raman laser. J. Appl. Phys. 126(23), 233103 (2019)

    Article  Google Scholar 

  17. Pradhan, A.K., Sen, M., Datta, T.: Led pumped Raman laser: towards the design of an on-chip all-silicon laser. Opt. Laser Technol. 147, 107634 (2022)

    Article  Google Scholar 

  18. Datta, T., Sen, M.: Integrable all-optical pass switch. Electron. Lett. 54(25), 1446–1448 (2018)

    Article  Google Scholar 

  19. Datta, T., Sen, M.: All-optical logic inverter for large-scale integration in silicon photonic circuits. IET Optoelectron. 14(5), 285–291 (2020)

    Article  Google Scholar 

  20. Datta, T., Sen, M.: Raman mediated ultrafast all-optical nor gate. Appl. Opt. 59(21), 6352–6359 (2020)

    Article  Google Scholar 

  21. Kumar, S., Sen, M.: Integrable all-optical not gate using nonlinear photonic crystal MZI for photonic integrated circuit. JOSA B 37(2), 359–369 (2020)

    Article  MathSciNet  Google Scholar 

  22. Scullion, M.G., Krauss, T.F., Di Falco, A.: Slotted photonic crystal sensors. Sensors 13(3), 3675–3710 (2013)

    Article  Google Scholar 

  23. Wülbern, J.H., Hampe, J., Petrov, A., Eich, M., Luo, J., Jen, A.K.-Y., Di Falco, A., Krauss, T.F., Bruns, J.: Electro-optic modulation in slotted resonant photonic crystal heterostructures. Appl. Phys. Lett. 94(24), 241107 (2009)

    Article  Google Scholar 

  24. Lin, S., Hu, J., Kimerling, L., Crozier, K.: Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection. Opt. Lett. 34(21), 3451–3453 (2009)

    Article  Google Scholar 

  25. Caër, C., Combrié, S., Le Roux, X., Cassan, E., De Rossi, A.: Extreme optical confinement in a slotted photonic crystal waveguide. Appl. Phys. Lett. 105(12), 121111 (2014)

    Article  Google Scholar 

  26. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Molding the flow of light. Princet. Univ. Press., Princeton (2008)

    Google Scholar 

  27. Prather, D.W., Shi, S., Sharkawy, A., Murakowski, J., Schneider, G.: Photonic crystals. Theory, Aplications and Fabrication (2009)

  28. Gao, D., Zhou, Z.: Nonlinear equation method for band structure calculations of photonic crystal slabs. Appl. Phys. Lett. 88(16), 163105 (2006)

    Article  Google Scholar 

  29. Chugh, S., Ghosh, S., Gulistan, A., Rahman, B.: Machine learning regression approach to the nanophotonic waveguide analyses. J. Lightwave Technol. 37(24), 6080–6089 (2019)

    Article  Google Scholar 

  30. Liu, A., Lin, T., Han, H., Zhang, X., Chen, Z., Gan, F., Lv, H., Liu, X.: Analyzing modal power in multi-mode waveguide via machine learning. Opt. Express 26(17), 22100–22109 (2018)

    Article  Google Scholar 

  31. Nikulin, A., Zisman, I., Eich, M., Petrov, A.Y., Itin, A.: Machine learning models for photonic crystals band diagram prediction and gap Optimisation. Photon. Nanostructures-Fundam. Appl. 52, 101076 (2022)

    Article  Google Scholar 

  32. Christensen, T., Loh, C., Picek, S., Jakobović, D., Jing, L., Fisher, S., Ceperic, V., Joannopoulos, J.D., Soljačić, M.: Predictive and generative machine learning models for photonic crystals. Nanophotonics 9(13), 4183–4192 (2020)

    Article  Google Scholar 

  33. Abe, R., Takeda, T., Shiratori, R., Shirakawa, S., Saito, S., Baba, T.: Optimization of an h0 photonic crystal nanocavity using machine learning. Opt. Lett. 45(2), 319–322 (2020)

    Article  Google Scholar 

  34. Asano, T., Noda, S.: Optimization of photonic crystal nanocavities based on deep learning. Opt. Express 26(25), 32704–32717 (2018)

    Article  Google Scholar 

  35. Li, R., Gu, X., Li, K., Huang, Y., Li, Z., Zhang, Z.: Deep learning-based modeling of photonic crystal nanocavities. Opt. Mater. Express 11(7), 2122–2133 (2021)

    Article  Google Scholar 

  36. Chugh, S., Gulistan, A., Ghosh, S., Rahman, B.: Machine learning approach for computing optical properties of a photonic crystal fiber. Opt. Express 27(25), 36414–36425 (2019)

    Article  Google Scholar 

  37. Boscolo, S., Finot, C.: Artificial neural networks for nonlinear pulse shaping in optical fibers. Opt. Laser Technol. 131, 106439 (2020)

    Article  Google Scholar 

  38. Yao, Q., Yang, H., Zhu, R., Yu, A., Bai, W., Tan, Y., Zhang, J., Xiao, H.: Core, mode, and spectrum assignment based on machine learning in space division multiplexing elastic optical networks. IEEE Access 6, 15898–15907 (2018)

    Article  Google Scholar 

  39. Huang, X., Cao, H., Jia, B.: Optimization of Levenberg Marquardt algorithm applied to nonlinear systems. Processes 11(6), 1794 (2023)

    Article  Google Scholar 

  40. Antos, R., Vozda, V., Veis, M.: Plane wave expansion method used to engineer photonic crystal sensors with high efficiency. Opt. Express 22(3), 2562–2577 (2014)

    Article  Google Scholar 

  41. Schwahn, C.F., Schulz, S.A.: Accurate and efficient prediction of photonic crystal waveguide bandstructures using neural networks. Opt. Continuum 2(6), 1479–1489 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows. Conception of the problem, review of literature, design and collection were done by Akash Kumar Pradhan, Tanmoy Datta, Chandra Prakash, Mrinal Sen, and Haraprasad Mondal. Data collection was done by Akash Kumar Pradhan, Tanmoy Datta, Chandra Prakash, Mrinal Sen, and Haraprasad Mondal. Analysis and interpretation of results, drafting of the manuscript, preparation of figures and presentations were done by Akash Kumar Pradhan, Tanmoy Datta, Chandra Prakash, Mrinal Sen, and Haraprasad Mondal. All authors have reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Tanmoy Datta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, A.K., Prakash, C., Datta, T. et al. ANN-based estimation of dispersion characteristics of slotted photonic crystal waveguides. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02162-9

Keywords

Navigation