Skip to main content
Log in

A design and modeling perspective on photostimulation of the subretinal prosthesis with graphene-based photodiodes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The two leading causes of blindness in the developed world are age-related macular degeneration and retinitis pigmentosa. The photostimulation of remaining retinal neurons using a photodiode in a proposed subretinal prosthesis is one of the solutions that hopes to restore vision. In this paper, we envision a better result through device simulation and modeling of a graphene-based photodiode that yields high-performance, wire-free, and light-induced retina implants. This study shows how the characteristics of graphene-based photodiodes have an improved result in terms of low threshold requirements for the activation of neurons. Graphene-based photodiode responsiveness is significantly improved in the visible and near-infrared ranges. Using a graphene photoconductive layer in a silicon photodiode can significantly decrease contact resistance, reduce dark current up to 20-fold, and lower the induced thermal effect and spontaneous emission by orders of magnitude of 103 and 106, respectively, compared to its Si counterparts. This advancement highlights graphene’s potential for optimizing metal–semiconductor interfaces, offering improved precision and sensitivity for high-resolution retinal prosthesis applications requiring enhanced signal-to-noise ratio and finer control. We offered a range of sizes for graphene-based photodiode arrays, including [5 × 5], [6 × 6], [6 × 7], and [7 × 6], to ensure the subretinal prostheses meet thermal safety standards. Physics-based modeling and simulation of graphene-based devices help us understand charge transfer mechanisms, improve operating bias, and achieve proper band gap modulation, which ushers in the development of graphene-like 2D materials for photostimulating neurons in projected retinal prostheses.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

This study is a computational study based on Comsol Multiphysics 6.0 simulation software. The model files and simulation setup used in this study are available upon request from the corresponding author.

References

  1. Yue, L., Weiland, J.D., Roska, B., Humayun, M.S.: Retinal stimulation strategies to restore vision: fundamentals and systems. Prog. Retin. Eye Res. 53, 21–47 (2016)

    Article  PubMed  Google Scholar 

  2. Hamel, C.: Retinitis pigmentosa. Orphanet J. Rare Dis. 1, 1–12 (2006). https://doi.org/10.1186/1750-1172-1-40

    Article  Google Scholar 

  3. Deng, Y., Qiao, L., Du, M., Qu, C., Wan, L., Li, J., Huang, L.: Age-related macular degeneration: epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis. 9, 62–79 (2022). https://doi.org/10.1016/J.GENDIS.2021.02.009

    Article  CAS  PubMed  Google Scholar 

  4. Burton, M.J., Ramke, J., Marques, A.P., Bourne, R.R.A., Congdon, N., Jones, I., Ah Tong, B.A.M., Arunga, S., Bachani, D., Bascaran, C., Bastawrous, A., Blanchet, K., Braithwaite, T., Buchan, J.C., Cairns, J., Cama, A., Chagunda, M., Chuluunkhuu, C., Cooper, A., Crofts-Lawrence, J., Dean, W.H., Denniston, A.K., Ehrlich, J.R., Emerson, P.M., Evans, J.R., Frick, K.D., Friedman, D.S., Furtado, J.M., Gichangi, M.M., Gichuhi, S., Gilbert, S.S., Gurung, R., Habtamu, E., Holland, P., Jonas, J.B., Keane, P.A., Keay, L., Khanna, R.C., Khaw, P.T., Kuper, H., Kyari, F., Lansingh, V.C., Mactaggart, I., Mafwiri, M.M., Mathenge, W., McCormick, I., Morjaria, P., Mowatt, L., Muirhead, D., Murthy, G.V.S., Mwangi, N., Patel, D.B., Peto, T., Qureshi, B.M., Salomão, S.R., Sarah, V., Shilio, B.R., Solomon, A.W., Swenor, B.K., Taylor, H.R., Wang, N., Webson, A., West, S.K., Wong, T.Y., Wormald, R., Yasmin, S., Yusufu, M., Silva, J.C., Resnikoff, S., Ravilla, T., Gilbert, C.E., Foster, A., Faal, H.B.: The lancet global health commission on global eye health: vision beyond 2020. Lancet Glob. Heal. 9, e489–e551 (2021). https://doi.org/10.1016/S2214-109X(20)30488-5

    Article  CAS  Google Scholar 

  5. Ayton, L.N., Barnes, N., Dagnelie, G., Fujikado, T., Goetz, G., Hornig, R., Jones, B.W., Muqit, M.M.K., Rathbun, D.L., Stingl, K., Weiland, J.D., Petoe, M.A.: An update on retinal prostheses. Clin. Neurophysiol. 131, 1383–1398 (2020). https://doi.org/10.1016/J.CLINPH.2019.11.029

    Article  PubMed  Google Scholar 

  6. Ghezzi, D., Antognazza, M.R., Dal Maschio, M., Lanzarini, E., Benfenati, F., Lanzani, G.: A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2(1), 166 (2011). https://doi.org/10.1038/ncomms1164

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ghezzi, D., Antognazza, M.R., MacCarone, R., Bellani, S., Lanzarini, E., Martino, N., Mete, M., Pertile, G., Bisti, S., Lanzani, G., Benfenati, F.: A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics 7, 400–406 (2013). https://doi.org/10.1038/nphoton.2013.34

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maya-Vetencourt, J.F., Ghezzi, D., Antognazza, M.R., Colombo, E., Mete, M., Feyen, P., Desii, A., Buschiazzo, A., Di Paolo, M., Di Marco, S., Ticconi, F., Emionite, L., Shmal, D., Marini, C., Donelli, I., Freddi, G., MacCarone, R., Bisti, S., Sambuceti, G., Pertile, G., Lanzani, G., Benfenati, F.: A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 16, 681–689 (2017). https://doi.org/10.1038/nmat4874

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mathieson, K., Loudin, J., Goetz, G., Huie, P., Wang, L., Kamins, T.I., Galambos, L., Smith, R., Harris, J.S., Sher, A., Palanker, D.: Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics 6, 391–397 (2012). https://doi.org/10.1038/nphoton.2012.104

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Flores, T., Goetz, G., Lei, X., Palanker, D.: Optimization of return electrodes in neurostimulating arrays. J. Neural Eng. 13(3), 036010 (2016). https://doi.org/10.1088/1741-2560/13/3/036010

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Huang, T.W., Kamins, T.I., Chen, Z.C., Wang, B.Y., Bhuckory, M., Galambos, L., Ho, E., Ling, T., Afshar, S., Shin, A., Zuckerman, V., Harris, J.S., Mathieson, K., Palanker, D.: Vertical-junction photodiodes for smaller pixels in retinal prostheses. J. Neural Eng. 18(3), 036015 (2021). https://doi.org/10.1088/1741-2552/abe6b8

    Article  ADS  Google Scholar 

  12. Delori, F.C., Webb, R.H., Sliney, D.H.: Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. JOSA A 24(5), 1250–1265 (2007)

    Article  ADS  PubMed  Google Scholar 

  13. Huang, H., Su, S., Wu, N., Wan, H., Wan, S., Bi, H., Sun, L.: Graphene-based sensors for human health monitoring. Front. Chem. 7, 399 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. The electronic properties of graphene: Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  15. Ma, T., Liu, Z., Wen, J., Gao, Y., Ren, X., Chen, H., Jin, C., Ma, X.L., Xu, N., Cheng, H.M., Ren, W.: Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 8(1), 14486 (2017). https://doi.org/10.1038/ncomms14486

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jang, H., Park, Y.J., Chen, X., Das, T., Kim, M.S., Ahn, J.H.: Graphene-Based Flexible and Stretchable Electronics. Adv. Mater. 28, 4184–4202 (2016). https://doi.org/10.1002/adma.201504245

    Article  CAS  PubMed  Google Scholar 

  17. Yan, C., Cho, J.H., Ahn, J.H.: Graphene-based flexible and stretchable thin film transistors. Nanoscale 4, 4870–4882 (2012). https://doi.org/10.1039/c2nr30994g

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Murali, K., Abraham, N., Das, S., Kallatt, S., Majumdar, K.: Highly Sensitive, Fast Graphene Photodetector with Responsivity >106 A/W Using a Floating Quantum Well Gate. ACS Appl. Mater. Interfaces 11, 30010–30018 (2019). https://doi.org/10.1021/acsami.9b06835

    Article  CAS  PubMed  Google Scholar 

  19. Riazimehr, S., Kataria, S., Gonzalez-Medina, J.M., Wagner, S., Shaygan, M., Suckow, S., Ruiz, F.G., Engström, O., Godoy, A., Lemme, M.C.: High Responsivity and Quantum Efficiency of Graphene/Silicon Photodiodes Achieved by Interdigitating Schottky and Gated Regions. ACS Photonics 6, 107–115 (2019). https://doi.org/10.1021/acsphotonics.8b00951

    Article  CAS  Google Scholar 

  20. Luo, F., Zhu, M., Tan, Y., Sun, H., Luo, W., Peng, G., Zhu, Z., Zhang, X.A., Qin, S.: High responsivity graphene photodetectors from visible to near-infrared by photogating effect. AIP Adv. 8(11), 115106 (2018). https://doi.org/10.1063/1.5054760

    Article  ADS  CAS  Google Scholar 

  21. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008). https://doi.org/10.1063/1.2907977

    Article  ADS  CAS  Google Scholar 

  23. Razeeb, K.M., Dalton, E., Cross, G.L.W., Robinson, A.J.: Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 63, 1–21 (2018). https://doi.org/10.1080/09506608.2017.1296605

    Article  CAS  Google Scholar 

  24. Sabri Alirezaei, I., Burte, E.P.: Modeling and simulation of a 3D-CMOS silicon photodetector for low-intensity light detection. In: Physics and Simulation of Optoelectronic Devices XXIV. p. 974208. SPIE (2016)

  25. Patel, K., Tyagi, P.K.: Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells. AIP Adv. 5(7), 077165 (2015). https://doi.org/10.1063/1.4927545

    Article  ADS  CAS  Google Scholar 

  26. Green, M.A., Keevers, M.J.: Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics Res. Appl. 3, 189–192 (1995). https://doi.org/10.1002/pip.4670030303

    Article  CAS  Google Scholar 

  27. Mohamad, W.F., Abou Hajar, A., Saleh, A.N.: Effects of oxide layers and metals on photoelectric and optical properties of Schottky barrier photodetector. Renew. Energy 31, 1493–1503 (2006). https://doi.org/10.1016/j.renene.2005.12.012

    Article  CAS  Google Scholar 

  28. Pimenta, S., Carmo, J.P., Correia, R.G., Minas, G., Castanheira, E.M.S.: Characterization of silicon photodiodes for diffuse reflectance signal extraction.

  29. Lemaire, W., Benhouria, M., Koua, K., Tong, W., Martin-Hardy, G., Stamp, M., Ganesan, K., Gauthier, L.-P., Besrour, M., Ahnood, A., Garrett, D.J., Roy, S., Ibbotson, M., Prawer, S., Fontaine, R.: Retinal Ganglion Cell Stimulation with an Optically Powered Retinal Prosthesis. (2020)

  30. Huang, H., Sheng, Y., Zhou, Y., Zhang, Q., Hou, L., Chen, T., Chang, R.J., Warner, J.H.: 2D-Layer-Dependent Behavior in Lateral Au/WS2/Graphene Photodiode Devices with Optical Modulation of Schottky Barriers. ACS Appl. Nano Mater. 1, 6874–6881 (2018). https://doi.org/10.1021/acsanm.8b01695

    Article  CAS  Google Scholar 

  31. Reeves, G.K.: Comment on “An accurate method to extract specific contact resistivity using cross-bridge kelvin resistors.” IEEE Electron Device Lett. 7, 142 (1986). https://doi.org/10.1109/EDL.1986.26322

    Article  ADS  Google Scholar 

  32. Loh, W.M., Swirhun, S.E., Schreyer, T.A., Saraswat, K.C., Swanson, R.M.: Modeling and Measurement of Contact Resistances. IEEE Trans. Electron Devices 34, 512–524 (1987). https://doi.org/10.1109/T-ED.1987.22957

    Article  ADS  Google Scholar 

  33. Choi, C., Choi, M.K., Liu, S., Kim, M.S., Park, O.K., Im, C., Kim, J., Qin, X., Lee, G.J., Cho, K.W., Kim, M., Joh, E., Lee, J., Son, D., Kwon, S.H., Jeon, N.L., Song, Y.M., Lu, N., Kim, D.H.: Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8(1), 1664 (2017). https://doi.org/10.1038/s41467-017-01824-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moorthy, V.M., Sugantharathnam, M., Rathnasami, J.D., Pattan, S.: Design and characterisation of graphene-based nano-photodiode array device for photo-stimulation of subretinal implant. Micro Nano Lett. 14, 1131–1135 (2019). https://doi.org/10.1049/mnl.2019.0030

    Article  CAS  Google Scholar 

  35. Stett, A., Barth, W., Weiss, S., Haemmerle, H., Zrenner, E.: Electrical multisite stimulation of the isolated chicken retina. Vis. Res. 40(13), 1785–1795 (2000)

    Article  CAS  PubMed  Google Scholar 

  36. Kusnyerik, A., Greppmaier, U., Wilke, R., Gekeler, F., Wilhelm, B., Sachs, H.G., Bartz-Schmidt, K.U., Klose, U., Stingl, K., Resch, M.D., Hekmat, A., Bruckmann, A., Karacs, K., Nemeth, J., Suveges, I., Zrenner, E.: Positioning of electronic subretinal implants in blind retinitis pigmentosa patients through multimodal assessment of retinal structures. Investig. Ophthalmol. Vis. Sci. 53, 3748–3755 (2012). https://doi.org/10.1167/iovs.11-9409

    Article  Google Scholar 

  37. Drasdo, N., Fowler, C.W.: Non-linear projection of the retinal image in a wide-angle schematic eye. Br. J. Ophthalmol. 58, 709–714 (1974). https://doi.org/10.1136/bjo.58.8.709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hirsh, J., Curcio, C.A.: The spatial resolution capacity of human foveal retina. Vis. Res. 29(9), 1095–1101 (1989)

    Article  Google Scholar 

  39. Stingl, K., Bartz-Schmidt, K.U., Besch, D., Braun, A., Bruckmann, A., Gekeler, F., Greppmaier, U., Hipp, S., Hortdorfer, G., Kernstock, C., Koitschev, A., Kusnyerik, A., Sachs, H., Schatz, A., Stingl, K.T., Peters, T., Wilhelm, B., Zrenner, E.: Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. R. Soc. B Biol. Sci. 280(1757), 20130077 (2013). https://doi.org/10.1098/rspb.2013.0077

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the software support from the Indian Science Technology and Engineering Facilities Map (I-STEM) program funded by the Office of the Principal Scientific Adviser to the Government of India to carry out this academic research work at the Indian Institute of Technology, Kharagpur, India.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Sharique Ali Asghar: Conceptualization, methodology, software, validation, formal analysis, investigation, data curation, writing—original draft, writing - review & editing. Manjunatha Mahadevappa: Supervision and review. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Manjunatha Mahadevappa.

Ethics declarations

Competing interest

No, I declare that the authors have no competing interests as defined by Springer or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethics approval

This study is a computational study and does not involve human subjects. Therefore, ethics approval was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, S.A., Mahadevappa, M. A design and modeling perspective on photostimulation of the subretinal prosthesis with graphene-based photodiodes. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02144-x

Keywords

Navigation