Skip to main content

Advertisement

Log in

A review on the role of nanotechnology in the development of near-infrared photodetectors: materials, performance metrics, and potential applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This review article focuses on the role of nanotechnology (NT) in the development of advanced organic and inorganic photodetectors and their potential applications in the coming decades. We initiate the article with an overview of NT and potential applications of Nanotechnology in the twenty-first century ranging from Semiconductor manufacturing to Medical Imaging to Renewable energy to Quantum computing to Opto-electronics. The second part of the article delved into specific details on the role of nanotechnology and nanomaterials in developing advanced Photodetectors (PDs) and specifically discussing the internal functioning of near-infrared (NIR) photodetectors. Subsequently we focused on the performance metrics of PDs and types of PDs namely Organic Photodetectors (OPD) and Inorganic Photodetectors (IPD). We continued our in-depth discussion on OPDs and IPDs elaborating their structural features, operation mechanisms, types, performance optimization and role of functional nanomaterials. The final part of this review focuses on key applications of photodetectors e.g., retinal implant, biomedical imaging, personalized health monitoring, telecommunication, and military applications etc. Finally, we concluded the review paper discussing future opportunities and challenges regarding applications of NIR photodetectors in the twenty-first century.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Cheng HN, Doemeny LJ, Geraci CL, Grob Schmidt D (2016) nanotechnology overview: opportunities and challenges. In: Nanotechnology: delivering on the promise volume 1. ACS Publications, pp 1–12

  2. Santamaria A (2012) Historical overview of nanotechnology and nanotoxicology. Nanotoxicity Methods Protocols 1–12

  3. Jeevahan J, Chandrasekaran M (2019) Nanoedible films for food packaging: a review. J Mater Sci 54:12290–12318

    Article  CAS  Google Scholar 

  4. Wang X, Yang L, Chen Z, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA A Cancer J Clin 58(2):97–110

    Article  Google Scholar 

  5. Pavan SR, Prabhu A (2022) Advanced cisplatin nanoformulations as targeted drug delivery platforms for lung carcinoma treatment: a review. J Mater Sci 57:16192–16227

    Article  CAS  Google Scholar 

  6. Cormode DP, Skajaa T, Fayad ZA, Mulder WJM (2009) Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 29(7):992–1000

    Article  CAS  Google Scholar 

  7. Hulla JE, Sahu SC, Hayes AW (2015) Nanotechnology: history and future. Hum Exp Toxicol 34(12):1318–1321

    Article  CAS  Google Scholar 

  8. Lee Y-C, Moon J-Y, Lee Y-C, Moon J-Y (2020) Introduction to nanotechnology and bionanotechnology. Introd Bionanotechnol 1–14

  9. Mansoori GA (2002) Advances in atomic & molecular nanotechnology. United Nat Tech Monitor 53–59

  10. De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, Berlin

    Book  Google Scholar 

  11. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78(3):585–594

    Article  CAS  Google Scholar 

  12. Choi H, Mody CCM (2009) The long history of molecular electronics: microelectronics origins of nanotechnology. Soc Stud Sci 39(1):11–50

    Article  Google Scholar 

  13. Bohr MT (2002) Nanotechnology goals and challenges for electronic applications. IEEE Trans Nanotechnol 1(1):56–62

    Article  Google Scholar 

  14. Zhang L, Xu K, Wei F (2023) Fabrication of electronic switches based on low-dimensional nanomaterials: a review. J Mater Sci 58:2087–2110

    Article  CAS  Google Scholar 

  15. Jiménez VA, Moreno N, Guzmán L et al (2020) Visible-light-responsive folate-conjugated titania and alumina nanotubes for photodynamic therapy applications. J Mater Sci 55:6976–6991

    Article  Google Scholar 

  16. Surendiran A, Sandhiya S, Pradhan SC, Adithan C (2009) Novel applications of nanotechnology in medicine. Indian J Med Res 130(6):689–701

    CAS  Google Scholar 

  17. Jiao X, Zhou W, Akhtar MH et al (2023) Hollow carbon nanospheres loaded with upconversion nanoparticles for chemo-photothermal synergistic cancer therapy. J Mater Sci (ASAP)

  18. Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10(1):1–8

    Google Scholar 

  19. Mumtaz M, Hussain N, Salam S et al (2022) Multifunctional nanodiamonds as emerging platforms for cancer treatment, and targeted delivery of genetic factors and protein medications—a review. J Mater Sci 57:8064–8099

    Article  CAS  Google Scholar 

  20. Fukumori Y, Ichikawa H (2006) Nanoparticles for cancer therapy and diagnosis. Adv Powder Technol 17(1):1–28

    Article  CAS  Google Scholar 

  21. Bae KH, Chung HJ, Park TG (2011) Nanomaterials for cancer therapy and imaging. Mol Cells 31:295–302

    Article  CAS  Google Scholar 

  22. Serrano E, Rus G, Garcia-Martinez J (2009) Nanotechnology for sustainable energy. Renew Sustain Energy Rev 13(9):2373–2384

    Article  CAS  Google Scholar 

  23. Menéndez-Manjón A, Moldenhauer K, Wagener P, Barcikowski S (2011) Nano-energy research trends: bibliometrical analysis of nanotechnology research in the energy sector. J Nanopart Res 13(9):3911–3922

    Article  Google Scholar 

  24. Aithal PS, Aithal S (2016) Nanotechnology innovations & business opportunities in renewable energy sector. Int J Eng Res Mod Educ (IJERME) 1(1):674–692

    Google Scholar 

  25. Sahaym U, Norton MG (2008) Advances in the application of nanotechnology in enabling a ‘hydrogen economy.’ J Mater Sci 43:5395–5429

    Article  CAS  Google Scholar 

  26. Zäch M, Hägglund C, Chakarov D, Kasemo B (2006) Nanoscience and nanotechnology for advanced energy systems. Curr Opin Solid State Mater Sci 10(3–4):132–143

    Article  Google Scholar 

  27. Deng J, Lu X, Liu L et al (2016) Introducing rolled-up nanotechnology for advanced energy storage devices. Adv Energy Mater 6(23):1600797

    Article  Google Scholar 

  28. Wang Y, Zhang L, Hou H et al (2021) Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci 56:173–200

    Article  CAS  Google Scholar 

  29. Liu J, Kopold P, van Aken PA et al (2015) Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew Chem 127(33):9768–9772

    Article  Google Scholar 

  30. Ghasemzadeh F, Shayan ME (2020) Nanotechnology in the service of solar energy systems. Nanotechnol Environ 59

  31. Abdin Z, Alim MA, Saidur R et al (2013) Solar energy harvesting with the application of nanotechnology. Renew Sustain Energy Rev 26:837–852

    Article  CAS  Google Scholar 

  32. Arun G, Mishra V (2014) A review on quantum computing and communication. In: 2014 2nd International conference on emerging technology trends in electronics, communication and networking 1–5

  33. Ullah Z (2012) Nanotechnology and its impact on modern computer. Glob J Res Eng 12:35–37

    Google Scholar 

  34. Bhat HA, Khanday FA, Kaushik BK et al (2022) Quantum computing: fundamentals, implementations and applications. IEEE Open J Nanotechnol 3:61–77

    Article  Google Scholar 

  35. Mertinez-Duat J.M., Martin-Palma R.J., Agullo-Rueda F. (2006) Nanotechnology for Microelectronics and Optoelectronics, Ch 10: Optoelectronic Devices Based on Nanostructures. Elsevier. ISBN-13: 978–0080–445533, 247–267.

  36. Femius KA, Alu A, Polman A (2015) Nanophotonics: shrinking light-based technology. Science 348(6234):516–521

    Article  Google Scholar 

  37. Fang J, Zhou Z, Xiao M et al (2020) Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat 2(2):291–317

    Article  CAS  Google Scholar 

  38. Koppens FHL, Mueller T, Avouris P et al (2014) Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9(10):780–793

    Article  CAS  Google Scholar 

  39. Li Q, Guo Y, Liu Y (2019) Exploration of near-infrared organic photodetectors. Chem Mater 31:6359–6379

    Article  CAS  Google Scholar 

  40. Yang D, Ma D (2019) Development of organic semiconductor photodetectors: from mechanism to applications. Adv Opt Mater 7(1):1800522

    Article  Google Scholar 

  41. Jamieson T, Bakhshi R, Petrova D et al (2007) Biological applications of quantum dots. Biomaterials 28(31):4717–4732

    Article  CAS  Google Scholar 

  42. Howarth M, Takao K, Hayashi Y, Ting AY (2005) Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci 102(21):7583–7588

    Article  CAS  Google Scholar 

  43. Yan C, Hu X, Guan P et al (2020) Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging. J Mater Sci 55:1198–1215

    Article  CAS  Google Scholar 

  44. Li H, Yang D, Zhang T et al (2019) Flexible, UV-responsive perovskite photodetectors with low driving voltage. J Mater Sci 54:11556–11563

    Article  CAS  Google Scholar 

  45. Zhai T, Li L, Wang X et al (2010) Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv Func Mater 20(24):4233–4248

    Article  CAS  Google Scholar 

  46. Ren A, Yuan L, Xu H et al (2019) Recent progress of III–V quantum dot infrared photodetectors on silicon. J Mater Chem C 7(46):14441–14453

    Article  CAS  Google Scholar 

  47. Duan Y, Liu B (2018) Recent advances of optical imaging in the second near-infrared window. Adv Mater 30(47):1802394

    Article  Google Scholar 

  48. Alzakia FI, Tan SC (2021) Liquid-exfoliated 2D materials for optoelectronic applications. Adv Sci 8(11):2003864

    Article  CAS  Google Scholar 

  49. Gil HM, Price TW, Chelani K et al (2021) NIR-quantum dots in biomedical imaging and their future. Iscience 24:102189

    Article  CAS  Google Scholar 

  50. Schmid G (2011) Nanoparticles: from theory to application. John Wiley & Sons, Hoboken

    Google Scholar 

  51. Yin X, Zhang C, Guo Y et al (2021) PbS QD-based photodetectors: future-oriented near-infrared detection technology. J Mater Chem C 9(2):417–438

    Article  CAS  Google Scholar 

  52. Masoudian Saadabad R, Pauly C, Herschbach N et al (2021) Highly efficient near-infrared detector based on optically resonant dielectric nanodisks. Nanomaterials 11(2):428

    Article  Google Scholar 

  53. Tian J, Luo H, Li Q et al (2018) Near-infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures. Laser Photonics Rev 12(9):1800076

    Article  Google Scholar 

  54. Wang J, Loh WY, Chua KT et al (2008) Evanescent-coupled Ge pin photodetectors on Si-waveguide with SEG-Ge and comparative study of lateral and vertical pin configurations. IEEE Electron Device Lett 29(5):445–448

    Article  Google Scholar 

  55. Michel J, Liu J, Kimerling LC (2010) High-performance Ge-on-Si photodetectors. Nat Photonics 4(8):527–534

    Article  CAS  Google Scholar 

  56. Venables DS, Schmuttenmaer CA (1998) Far-infrared spectra and associated dynamics in acetonitrile–water mixtures measured with femtosecond THz pulse spectroscopy. J Chem Phys 108(12):4935–4944

    Article  CAS  Google Scholar 

  57. Zheng J, Chong H, Wang L et al (2020) A robust SiC nanoarray blue-light photodetector. J Mater Chem C 8(18):6072–6078

    Article  CAS  Google Scholar 

  58. Baeg K-J, Binda M, Natali D et al (2013) Organic light detectors: photodiodes and phototransistors. Adv Mater 25(31):4267–4295

    Article  CAS  Google Scholar 

  59. Singamaneni S, LeMieux MC, Lang HP et al (2008) Bimaterial microcantilevers as a hybrid sensing platform. Adv Mater 20(4):653–680

    Article  CAS  Google Scholar 

  60. Halls JJM, Walsh CA, Greenham NC et al (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500

    Article  CAS  Google Scholar 

  61. Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791

    Article  CAS  Google Scholar 

  62. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE (2007) Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater 19(12):1551–1566

    Article  CAS  Google Scholar 

  63. Liu C, Wang K, Gong X, Heeger AJ (2016) Low bandgap semiconducting polymers for polymeric photovoltaics. Chem Soc Rev 45(17):4825–4846

    Article  CAS  Google Scholar 

  64. Dou L, Liu Y, Hong Z et al (2015) Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem Rev 115(23):12633–12665

    Article  CAS  Google Scholar 

  65. Qian G, Wang ZY (2010) Near-infrared organic compounds and emerging applications. Chem An Asian J 5(5):1006

    Article  CAS  Google Scholar 

  66. Yao Y, Liang Y, Shrotriya V et al (2007) Plastic near-infrared photodetectors utilizing low band gap polymer. Adv Mater 19(22):3979–3983

    Article  CAS  Google Scholar 

  67. Lee K, Sotzing GA (2001) Poly (thieno [3, 4-b] thiophene). A new stable low band gap conducting polymer. Macromolecules 34(17):5746–5747

    Article  CAS  Google Scholar 

  68. Perzon E, Zhang F, Andersson M et al (2007) A conjugated polymer for near infrared optoelectronic applications. Adv Mater 19(20):3308–3311

    Article  CAS  Google Scholar 

  69. Tang Q, Li L, Song Y et al (2007) Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons. Adv Mater 19(18):2624–2628

    Article  CAS  Google Scholar 

  70. Mathieson K, Loudin J, Goetz G et al (2012) Photovoltaic retinal prosthesis with high pixel density. Nat Photonics 6(6):391–397

    Article  CAS  Google Scholar 

  71. Lim S, Kim H, Seok C et al (2015) A neural stimulator with silicon nanowire photodetector for artificial retinal prostheses. J Comput Theor Nanosci 12(5):769–773

    Article  CAS  Google Scholar 

  72. Xing S, Nikolis VC, Kublitski J et al (2021) Miniaturized VIS-NIR spectrometers based on narrowband and tunable transmission cavity Organic photodetectors with ultrahigh specific detectivity above 1014 jones. Adv Mater 33(44):2102967

    Article  CAS  Google Scholar 

  73. Lee S, Jung SW, Park S et al (2012) Fabrication and evaluation of silicon nanowire photodetectors on flexible substrate for retinal prosthetic system. Sens Mater 24(4):205–220

    CAS  Google Scholar 

  74. Ng TN, Wong WS, Chabinyc ML et al (2008) Flexible image sensor array with bulk heterojunction organic photodiode. Appl Phys Lett 92:213303

    Article  Google Scholar 

  75. Lochner CM, Khan Y, Pierre A, Arias AC (2014) All-organic optoelectronic sensor for pulse oximetry. Nat Commun 5:5745

    Article  CAS  Google Scholar 

  76. Stingl K, Bartz-Schmidt KU, Besch D et al (2015) Subretinal visual implant alpha IMS–clinical trial interim report. Vis Res 111:149–160

    Article  Google Scholar 

  77. Yin Y, Xi Z, Yu Q et al (2023) Near-infrared-II balanced ambipolar phototransistors realized by the optimized planar-heterojunction channel layer and charge-transfer-complex photosensitive layer. Results Phys 48:106456

    Article  Google Scholar 

  78. Andleeb S, Wang X, Dong H et al (2023) Fast-Response micro-phototransistor based on MoS2/organic molecule heterojunction. Nanomaterials 13(9):1491

    Article  CAS  Google Scholar 

  79. Che Y, Cao X, Zhang Y et al (2021) High-performance photodetector using CsPbBr3 perovskite nanocrystals and graphene hybrid channel. J Mater Sci 56:2341–2346

    Article  CAS  Google Scholar 

  80. Hu X, Li X, Li G et al (2021) Recent progress of methods to enhance photovoltaic effect for self-powered heterojunction photodetectors and their applications in inorganic low-dimensional structures. Adv Func Mater 31(24):2011284

    Article  CAS  Google Scholar 

  81. Liang F-X, Wang J-Z, Li Z et al (2017) Near-infrared-light photodetectors based on one-dimensional inorganic semiconductor nanostructures. Adv Opt Mater 5(14):1700081

    Article  Google Scholar 

  82. Shen G, Chen D (2010) One-dimensional nanostructures for photodetectors. Recent Pat Nanotechnol 4(1):20–31

    Article  CAS  Google Scholar 

  83. Bao C, Yang J, Bai S et al (2018) High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv Mater 30(38):1803422

    Article  Google Scholar 

  84. Rana AK, Kumar M, Ban DK et al (2019) (2019) Enhancement in performance of transparent p-NiO/n-ZnO heterojunction ultrafast self-Powered photodetector via pyro-phototronic effect. Adv Electron Mater 5:1900438

    Article  Google Scholar 

  85. Hatch SM, Briscoe J, Dunn S (2013) A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response. Adv Mater 25:867

    Article  CAS  Google Scholar 

  86. You D, Xu C, Zhang W et al (2019) Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays. Nano Energy 62:310

    Article  CAS  Google Scholar 

  87. Jiang J, Huang J, Ye Z et al (2020) Self-powered and broadband photodetector based on SnS2/ZnO1−xSx heterojunction. Adv Mater Interfaces 7:2000882

    Article  CAS  Google Scholar 

  88. Zeng LH, Lin SH, Li ZJ et al (2018) Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv Funct Mater 28:1705970

    Article  Google Scholar 

  89. Fernandes GE, Liu Z, Kim JH et al (2010) Quantum dot/carbon nanotube/silicon double heterojunctions for multi-band room temperature infrared detection

  90. Aberg I, Vescovi G, Asoli D et al (2016) A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun. IEEE J Photovolt 6:185

    Article  Google Scholar 

  91. Bao HF, Li CM, Cui XQ et al (2008) Single-crystalline Bi2S3 nanowire network film and its optical switches. Nanotechnology 19:335302

    Article  Google Scholar 

  92. Shaygan M, Davami K, Kheirabi N et al (2014) Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector. Phys Chem Chem Phys 16:22687

    Article  CAS  Google Scholar 

  93. Yang ZX, Han N, Fang M et al (2014) Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat Commun 5:5249

    Article  CAS  Google Scholar 

  94. Wang X, Cheng Z, Xu K et al (2013) High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat Photonics 7:888–891

    Article  CAS  Google Scholar 

  95. Duan T, Liao C, Chen T et al (2015) Single crystalline nitrogen-doped InP nanowires for low-voltage field-effect transistors and photodetectors on rigid silicon and flexible mica substrates. Nano Energy 15:293–302

    Article  CAS  Google Scholar 

  96. Knill E, Laflamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 409:46–52

    Article  CAS  Google Scholar 

  97. Schubert MB, Hierzenberger A, Lehner HJ, Werner JH (1999) Optimizing photodiode arrays for the use as retinal implants. Sens Actuators A 74(1–3):193–197

    Article  CAS  Google Scholar 

  98. Baek C, Seo J-M (2021) Encapsulation material for retinal prosthesis with photodetectors or photovoltaics. IEEE Sens J 22:1767–1774

    Article  Google Scholar 

  99. Simone G, Carlo Rasi D D, de Vries X et al (2018) Near-infrared tandem organic photodiodes for future application in artificial retinal implants 30 1804678: 1–7

  100. Kim MS, Lee GJ, Kim HM, Song YM (2017) Parametric optimization of lateral NIPIN phototransistors for flexible image sensors. Sensors 17(8):1774

    Article  Google Scholar 

  101. Lee S, Jung SW, Park S et al (2012) Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis. In: 2012 IEEE 25th international conference on micro electro mechanical systems (MEMS), pp 1364–1367

  102. Chuang AT, Margo CE, Greenberg PB (2014) Retinal implants: a systematic review. Br J Ophthalmol 98(7):852–856

    Article  Google Scholar 

  103. Dong R, Bi C, Dong Q et al (2014) An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain. Adv Opt Mater 2(6):549–554

    Article  CAS  Google Scholar 

  104. Gong X, Tong M, Xia Y et al (2009) High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948):1665–1667

    Article  CAS  Google Scholar 

  105. Cadusch JJ, Meng J, Craig BJ et al (2020) Visible to long-wave infrared chip-scale spectrometers based on photodetectors with tailored responsivities and multispectral filters. Nanophotonics 9(10):3197–3208

    Article  CAS  Google Scholar 

  106. Tang Z, Ma Z, Sánchez-Díaz A et al (2017) Polymer: fullerene bimolecular crystals for near-infrared spectroscopic photodetectors. Adv Mater 29(33):1702184

    Article  Google Scholar 

  107. Sun H, Tian W, Wang X et al (2020) In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control. Adv Mater 32(14):1908108

    Article  CAS  Google Scholar 

  108. Jovanov V, Donfack P, Müller A et al (2018) Standing wave spectrometer with semi-transparent organic detector. J Mater Chem C 6(42):11457–11464

    Article  CAS  Google Scholar 

  109. Manna E, Xiao T, Shinar J, Shinar R (2015) Organic photodetectors in analytical applications. Electronics 4(3):688–722

    Article  CAS  Google Scholar 

  110. Ren H, Chen J-D, Li Y-Q, Tang J-X (2021) Recent progress in organic photodetectors and their applications. Adv Sci 8(1):2002418

    Article  CAS  Google Scholar 

  111. Khan Y, Han D, Pierre A et al (2022) A flexible organic reflectance oximeter array. In: Proceedings of the national academy of sciences 115(47):E11015–11024

  112. Harris KD, Elias AL, Chung HJ (2016) Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci 51:2771–2805

    Article  CAS  Google Scholar 

  113. Cai S, Xu X, Yang W, Chen J, Fang X (2019) Materials and designs for wearable photodetectors. Adv Mater 31(18):1808138

    Article  Google Scholar 

  114. Zhao Z, Xu C, Niu L et al (2020) Recent progress on broadband organic photodetectors and their applications. Laser Photonics Rev 14(11):2000262

    Article  CAS  Google Scholar 

  115. Kim J, Gutruf P, Chiarelli AM et al (2016) Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv Funct Mater 27:1604373

    Article  Google Scholar 

  116. Dhar S, Lo JY, Palmer GM et al (2012) A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays. Biomed Opt Express 3(12):3211–3222

    Article  Google Scholar 

  117. Hahn DW, Feld MS (1999) Diagnosis of Bladder cancer with high-performance optical spectroscopy. IEEE Eng Med Biol Mag 18(5):58–66

    Google Scholar 

  118. Jo JA, Brennan JF (2013) Clinical applications of Raman spectroscopy. J R Soc Interface 10(83):20130229

    Google Scholar 

  119. Kanick SC, Davis S, Pogue BW (2016) Review of near-infrared fluorescence imaging in cancer detection. J Biomed Opt 21(8):080609

    Google Scholar 

  120. Laprevote ON, Verdier MP (2013) Biomedical applications of Raman spectroscopy: from biochemical analysis to in vivo studies. J Raman Spectrosc 44(1):95–103

    Google Scholar 

  121. Wang LV, Jacques SL (1998) Diffuse reflectance spectroscopy for noninvasive monitoring of glucose in vivo. In Proceedings of the SPIE 3597:474–483

  122. Altaqui A, Kolbas RM, Escuti MJ et al (2021) Organic-based photodetectors for multiband spectral imaging. Appl Opt 60(8):2314–2323

    Article  Google Scholar 

  123. Tada K, Ishii H (2000) Near-infrared photodetectors and their applications in optical communication systems. Proc IEEE 88(2):169–182

    Google Scholar 

  124. Zhao Z, Liu J, Liu Y, Zhu N (2017) High-speed photodetectors for optical communication system. J Semicond 38(12):121001

    Article  Google Scholar 

  125. Gupta R, Razeghi M (2005) Near-infrared photodetectors for fiber optic communication systems. IEEE J Quantum Electron 41(6):747–754

    Google Scholar 

  126. Hamilton SA, Bryce AC (2011) NIR Photodetectors for optical communications. Infrared Phys Technol 54(5):363–370

    Google Scholar 

  127. Tanimura T, Yasaka H, Kumozaki K (2005) Near-infrared photodetectors for high-speed optical communication systems. In Proceedings SPIE 5840, photonic materials, devices, and applications, pp 20–26

  128. Moore J, Kuo K, Ferrara P (2007) Flame spreading in a simulated fin-slot rocket motor. In: 43rd AIAA/ASME/SAE/ASEE Joint propulsion conference & exhibit, p 5780

  129. Mathews GC, Blaisdell MG, Lemcherfi AI et al (2021) High-bandwidth absorption-spectroscopy measurements of temperature, pressure, CO, and H2O in the annulus of a rotating detonation rocket engine. Appl Phys B 127(12):165

    Article  CAS  Google Scholar 

  130. Wang J, Zhang Z, Guo Y, Chen J, Chang X, Guo L (2018) Near-infrared fiber-coupled diode laser absorption sensor for rocket exhaust temperature measurement. J Appl Remote Sens 12(3):035007

    Google Scholar 

  131. Castro-Suarez JR, Pellegrino PM, Harrington JA (2013) Mid-infrared photothermal detection of trace explosives using semiconductor lasers. J Appl Phys 114(5):054903

    Google Scholar 

  132. Dai TJ, Fan XD, Ren YX et al (2018) Layer-controlled synthesis of wafer-scale MoSe2 nanosheets for photodetector arrays. J Mater Sci 53:8436–8444

    Article  CAS  Google Scholar 

  133. Huang J, Lee J, Vollbrecht J et al (2020) A high-performance solution-processed organic photodetector for near-infrared sensing. Adv Mater 32(1):1906027

    Article  CAS  Google Scholar 

  134. Yu Y, Wang Z, Dong F, Gao X, Jin W (2016) Methane detection using near-infrared diode laser-based off-axis integrated cavity output spectroscopy. Sens Actuators B Chem 222:1087–1091

    Google Scholar 

  135. Jana SK, Samanta SK, Bhattacharya S (2012) Noninvasive cancer detection using near-infrared imaging and gold nanoparticles. J Biomed Opt 17(6):066007

    Google Scholar 

  136. Ntziachristos V (2005) Real-time in vivo imaging with near-infrared fluorescence. J Biomed Opt 10(4):041207

    Google Scholar 

  137. Khaleghi M, Nourani MR (2015) Infrared thermography for detection and monitoring of greenhouse gases: a review. Atmos Environ 122:723–736

    Google Scholar 

  138. Mosadegh A, Asadi M, Tavassoli H, Bozorgi AR (2017) Infrared thermography and gas detection: a review. J Therm Anal Calorim 129(2):789–800

    Google Scholar 

  139. Yang W, Chen J, Zhang Y et al (2019) Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology. Adv Func Mater 29:1808182

    Article  Google Scholar 

  140. Dehzangi A, Wu D, McClintock R et al (2020) Demonstration of planar type-II superlattice-based photodetectors using silicon ion-implantation. In: Photonics, p 68

  141. Flöry N, Ma P, Salamin Y et al (2020) Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat Nanotechnol 15:118–124

    Article  Google Scholar 

  142. Wang N, Jiang D (2021) Light trapping in ZnO nanowires to control ultraviolet photodetection responsivity. J Mater Sci 56:5708–5716

    Article  CAS  Google Scholar 

  143. Westphal H, Gramlich S (1998) Automation structure of a semiconductor fab using factory communications. In: IECON’98. Proceedings of the 24th annual conference of the IEEE industrial electronics society (Cat. No. 98CH36200), pp 160–163

  144. Kargozar S, Mozafari M (2018) Nanotechnology and nanomedicine: start small, think big. Mater Today Proc 5:15492–15500

    Article  CAS  Google Scholar 

  145. Peng L, Hu L, Fang X (2013) Low-dimensional nanostructure ultraviolet photodetectors. Adv Mater 25:5321–5328

    Article  CAS  Google Scholar 

  146. Ressler ME, Bock JJ, Bandara SV et al (2001) Astronomical imaging with quantum well infrared photodetectors. Infrared Phys Technol 42:377–383

    Article  Google Scholar 

  147. Siegmund B, Mischok A, Benduhn J et al (2017) Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat Commun 8:15421

    Article  CAS  Google Scholar 

  148. Yadav PVK, Ajitha B, Reddy YAK, Sreedhar A (2021) Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region: a review. Chemosphere 279:130473

    Article  CAS  Google Scholar 

  149. Williams G, Backhouse C, Aziz H (2014) Integration of organic light emitting diodes and organic photodetectors for lab-on-a-chip bio-detection systems. Electronics 3:43–75

    Article  Google Scholar 

  150. Yotter RA, Wilson DM (2003) A review of photodetectors for sensing light-emitting reporters in biological systems. IEEE Sens J 3:288–303

    Article  CAS  Google Scholar 

  151. Renker D, Lorenz E (2009) Advances in solid state photon detectors. J Instrum 4:P04004

    Article  Google Scholar 

  152. Martin PN (2003) Measurements of atmospheric trace gasses using Open path differential UV absorption spectroscopy for urban pollution monitoring. University of London, London

    Google Scholar 

  153. Wang X, Hofmann O, Das R et al (2007) Integrated thin-film polymer/fullerene photodetectors for on-chip microfluidic chemiluminescence detection. Lab Chip 7:58–63

    Article  Google Scholar 

  154. Salam JA, Jayakrishnan R (2023) Multispectral self-powered below room-temperature ZnS photodetector. J Mater Sci 58:5186–5207

    Article  CAS  Google Scholar 

  155. Zanzottera E (1990) Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere. Crit Rev Anal Chem 21:279–319

    Article  Google Scholar 

  156. Godejohann M, Preiss A, Levsen K et al (1998) Determination of polar organic pollutants in aqueous samples of former ammunition sites in Lower Saxony by means of HPLC/photodiode array detection (HPLC/PDA) and proton nuclear magnetic resonance spectroscopy (1H-NMR). Acta Hydrochim Hydrobiol 26:330–337

    Article  Google Scholar 

  157. Kataria M, Yadav K, Cai S-Y et al (2018) Highly sensitive, visible blind, wearable, and omnidirectional near-infrared photodetectors. ACS Nano 12:9596–9607

    Article  CAS  Google Scholar 

  158. Schaefer-Prokop C, Neitzel U, Venema HW et al (2008) Digital chest radiography: an update on modern technology, dose containment and control of image quality. Eur Radiol 18:1818–1830

    Article  Google Scholar 

  159. Saeger ML, Sokol CK, Coffey SJ, et al (1988) A review of methods for remote sensing of atmospheric emissions from stationary sources. Environ Prot Agency Proj, pp 68–02

  160. Liu J, Xiao L, Liu Y et al (2019) Development of long-wavelength infrared detector and its space-based application requirements. Chin Phys B 28:028504

    Article  CAS  Google Scholar 

  161. Spinoglio L, Dasyra KM, Franceschini A et al (2012) Far-IR/submillimeter spectroscopic cosmological surveys: predictions of infrared line luminosity functions for z< 4 galaxies. Astrophys J 745:171

    Article  Google Scholar 

  162. Doyle D, Pilbratt G, Tauber J (2009) The Herschel and Planck space telescopes. Proc IEEE 97:1403–1411

    Article  Google Scholar 

  163. Shrivastavais AK, Rana S Emerging trends in decision sciences and business operations

  164. Illingworth GD (1990) 16 M UV-visible-IR lunar-based telescope. In: AIP Conference proceedings, pp 472–485

  165. Joseph CL (1995) UV image sensors and associated technologies. Exp Astron 6:97–127

    Article  Google Scholar 

  166. Feigelson ED, Montmerle T (1999) High-energy processes in young stellar objects. Ann Rev Astron Astrophys 37:363–408

    Article  CAS  Google Scholar 

  167. Pietropaolo A, Angelone M, Bedogni R et al (2020) Neutron detection techniques from µeV to GeV. Phys Rep 875:1–65

    Article  CAS  Google Scholar 

  168. Song C (2001) Study of ultra-high energy cosmic rays with the High-Resolution Fly’s Eye prototype detector. Columbia University Press, New York

    Google Scholar 

  169. Norcini D (2019) First search for eV-scale sterile neutrinos and precision measurementof the 235U antineutrino spectrum with the prospect experiment. Yale University

  170. Kazanskiy NL, Butt MA, Khonina SN (2022) Recent advances in wearable optical sensor automation powered by battery versus skin-like battery-free devices for personal healthcare—a review. Nanomaterials 12:334

    Article  CAS  Google Scholar 

  171. Zhao J, Ghannam R, Htet KO et al (2020) Self-Powered implantable medical devices: photovoltaic energy harvesting review. Adv Healthc Mater 9:2000779

    Article  CAS  Google Scholar 

  172. Pogorelov I, Feldker T, Marciniak CD et al (2021) Compact ion-trap quantum computing demonstrator. PRX Quantum 2:020343

    Article  Google Scholar 

Download references

Acknowledgements

S.G. acknowledge support from the Science and Engineering Research Board (SERB) under Startup Research Grant (SRG/2021/001465) and SRM University AP, Andhra Pradesh for internal research grant (SRMAP/URG/E&PP/2022-23/002). S. C. acknowledges the financial support from University Grant Commission—Department of Atomic Energy (UGC-DAE) consortium for scientific research, (UGC-DAE-CRS/2021-22/02/513) and SRM University AP, Andhra Pradesh for internal research grant (SRMAP/URG/E&PP/2022-23/014). W. B. B. acknowledge support from the Science and Engineering Research Board (SERB) under Startup Research Grant (SRG/2020/001421).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—K.G., P.M.N., and S.C.; Methodology—K.G., P.M.N., S.S., G.K.D., W.B.B., S.G. and S.C. Writing original draft—K.G., P.M.N., S.S., G.K.D., W.B.B., S.G. and S.C. Review and editing—K.G., P.M.N., S.G. and S.C. Supervision—S.G. and S.C. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Siddhartha Ghosh or Sabyasachi Chakrabortty.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundepudi, K., Neelamraju, P.M., Sangaraju, S. et al. A review on the role of nanotechnology in the development of near-infrared photodetectors: materials, performance metrics, and potential applications. J Mater Sci 58, 13889–13924 (2023). https://doi.org/10.1007/s10853-023-08876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08876-8

Navigation