Skip to main content
Log in

Generation of a multi-scroll chaotic system via smooth state transformation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The objective of this paper is to generate and analyse a multi-scroll chaotic system from a proposed oscillator system. A novel three-dimensional oscillator system is proposed and analysed for its chaotic range and produces a double-scroll chaotic system. Analogue circuit realization of the proposed oscillator is performed in the Multisim Circuit Design Suite. Further, unlike other nonsmooth methods that involve tedious calculations, a simple and smooth state transformation is proposed which results in multi-scroll attractors of the novel chaotic system. Different qualitative and quantitative tools including time series plot, phase portrait, bifurcation diagram, Lyapunov exponent spectrum, Lyapunov dimension and maximal Lyapunov exponent are used to analyse different behaviours. Simulation is carried out in a MATLAB environment for effective verification of the theoretical approach. The simulation results reveal that the objective is successfully achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available in the manuscript.

References

  1. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lu, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Vaidyanathan, S., Sambas, A., Mamat, M., Sanjaya, W.S.M.: A new three-dimensional chaotic system with a hidden attractor, circuit design and application in wireless mobile robot. Arch. Control Sci. 27, 541–554 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Luo, R.C., Chung, L.Y., Lien, C.H.: A novel symmetric cryptography based on the hybrid Haar wavelets encoder and chaotic masking scheme. IEEE Trans. Ind. Electron. 49, 933–944 (2002)

    Article  Google Scholar 

  5. Grassi, G., Mascolo, S.: A system theory approach for designing cryptosystems based on hyperchaos. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46, 1135–1138 (1999)

    Article  MATH  Google Scholar 

  6. Vaidyanathan, S., Akgul, A., Kacar, S.: A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography. Eur. Phy. J. Plus 133, 46–64 (2018)

    Article  Google Scholar 

  7. Singh, P.P., Singh, K.M., Roy, B.K.: Chaos control in biological system using recursive backstepping sliding mode control. Eur. Phys. J. Spec. Top. 227, 731–746 (2018)

    Article  Google Scholar 

  8. Singh, P.P., Roy, B.K.: Microscopic chaos control of chemical reactor system using nonlinear active plus proportional integral sliding mode control technique. Eur. Phys. J. Spec. Top. 228, 169–184 (2019)

    Article  Google Scholar 

  9. Laskar, J.: Large-scale chaos in the solar system. Astron. Astrophys. 287, 9–12 (1994)

    Google Scholar 

  10. Kumar, M., Singh, P.P.: Chaos control of a four-dimensional fundamental power system using pole placement-based proportional integral sliding mode control. Int. J. Autom. Control 13, 679–697 (2019)

    Article  Google Scholar 

  11. Singh, P.P., Roy, B.K.: Memristor-based novel complex-valued chaotic system and its projective synchronisation using nonlinear active control technique. Eur. Phys. J. Spec. Top. 228, 2197–2214 (2019)

    Article  Google Scholar 

  12. Pecora, L.M., Carrol, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–825 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Abel, A., Schwarz, W.: Chaos communications-principles, schemes, and system analysis. IEEE Proc. 90, 691–710 (2002)

    Article  Google Scholar 

  14. Rauf, K., Yasir, M.: Chaos based optical communication. Int. J. Comput. Commun. Eng. 2, 97–100 (2013)

    Article  Google Scholar 

  15. Singh, P.P., Roy, B.K.: Comparative performances of synchronisation between different classes of chaotic systems using three control techniques. Annu. Rev. Control. 45, 152–165 (2018)

    Article  MathSciNet  Google Scholar 

  16. Singh, P.P., Singh, J.P., Roy, B.K.: NAC-based synchronisation and anti-synchronisation between hyperchaotic and chaotic systems. Its analogue circuit design and application. IETE J. Res. 63, 1–17 (2017)

    Article  Google Scholar 

  17. Tai, W., Teng, Q., Zhou, Y.: Chaos synchronization of stochastic reaction-diffusion time-delay neural networks via non-fragile output-feedback control. Appl. Math. Comput. 354, 115–127 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Singh, P.P., Roy, B.K.: Inter network synchronisation of complex dynamical networks by using smooth proportional integral SMC technique. Eur. Phys. J. Spec. Top. 229, 861–876 (2020)

    Article  Google Scholar 

  19. Wang, G.-Y., Qiu, S.-S., Li, H.-W., Li, C.-F., Yan, Z.: A new chaotic system and its circuit realization. Chin. Phys. 15, 2872 (2006)

    Article  Google Scholar 

  20. Gao, H.Q., Wang, Y.J., Kang, S.Q., Le, Z., Wang, J.Q., Wei, J.J.: Realization of digital chaotic signal generation circuits. Appl. Mech. Mater. 716–717, 1352–1355 (2014)

    Article  Google Scholar 

  21. Singh, J.P., Roy, B.K.: The simplest 4-D chaotic system with line of equilibria, chaotic 2-torus and 3-torus behaviour. Nonlinear Dyn. 89, 1845–1862 (2017)

    Article  MathSciNet  Google Scholar 

  22. Çavuşoğlu, U., Panahi, S., Akgül, A., Jafari, S., Kaçar, S.: A new chaotic system with hidden attractor and its engineering applications: analog circuit realization and image encryption, Analog Integrated Circuits. Signal Process. 98, 85–99 (2019)

    Google Scholar 

  23. Singh, P.P.: A novel chaotic system with wide spectrum, its synchronization, circuit design and application to secure communication, Indian. J. Sci. Technol. 14, 2351–2367 (2021)

    Google Scholar 

  24. Nwachioma, C., Perez-Cruz, J.H.: Analysis of a new chaotic system, electronic realization and use in navigation of differential drive mobile robot. Chaos Solitons Fractals 144, 110684 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jafari, S., Sprott, J.C.: Simple chaotic flows with a line equilibrium. Chaos Solitans Fractals 57, 79–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Singh, J.P., Roy, B.K.: Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria. Chaos Solitans Fractals 114, 81–91 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Singh, J.P., Roy, B.K.: Coexistence of asymmetric hidden chaotic attractors in a new simple 4-D chaotic system with curve of equilibria. Optik 145, 209–217 (2017)

    Article  Google Scholar 

  28. Pham, V.T., Jafari, S., Volos, C., Kapitaniak, T.: A gallery of chaotic systems with an infinite number of equilibrium points. Chaos Solitans Fractals 93, 58–63 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vaidyanathan, S., Volos, C.: Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch. Control Sci. 25, 333–353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, S., Zeng, Y.: A simple Jerk-like system without equilibrium: asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees. Chaos Solitans Fractals 120, 25–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nazarimehr, F., Rajagopal, K., Kengne, J., Jafari, S., Pham, V.T.: A new four-dimensional system containing chaotic or hyper-chaotic attractors with no equilibrium, a line of equilibria and unstable equilibria. Chaos Solitans Fractals 111, 108–118 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bao, B., Jiang, T., Wang, G., Jin, P., Bao, H., Chen, M.: Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn. 89, 1157–1171 (2017)

    Article  Google Scholar 

  33. Bao, B., Wang, N., Bocheng, B., Chen, Mo., Jin, P., Wang, G.: Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria. Commun. Nonlinear Sci. Numer. Simul. 57, 264–275 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Folifack, S.V.R., Kengne, J., Kana, L.K.: Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity. Chaos Solitans Fractals 113, 263–274 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jafari, S., Ahmadi, A., Jalil, A., Khalaf, M.: A new hidden chaotic attractor with extreme multi-stability. Int. J. Electron. Commun. 89, 131–135 (2018)

    Article  Google Scholar 

  36. Jafari, S., Ahmadi, A., Panahi, S., Rajagopal, K.: Extreme multi-stability: When imperfection changes quality. Chaos Solitans Fractals 108, 182–186 (2018)

    Article  Google Scholar 

  37. Zhang, X., Li, Z.: Hidden extreme multistability in a novel 4D fractional-order chaotic system. Int. J. Non-Linear Mech. 111, 14–27 (2019)

    Article  Google Scholar 

  38. Chen, M., Sun, M., Bao, H., Hu, Y., Bao, B.: Flux-charge analysis of two-memristor-based Chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67, 2197–2206 (2020)

    Article  Google Scholar 

  39. Chen, C., Chen, J., Bao, H., Chen, M., Bao, B.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95, 3385–3399 (2019)

    Article  MATH  Google Scholar 

  40. Chen, M., Li, M., Yu, Q.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81, 215–226 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phy. J. Spec. Top. 224, 1421–1458 (2015)

    Article  Google Scholar 

  42. Brezetskyi, S., Dudkowskia, D., Kapitaniak, T.: Rare and hidden attractors in Van der Pol-Duffing oscillators. Eur. Phy. J. Spec. Top. 224, 1459–1467 (2015)

    Article  Google Scholar 

  43. Elwakil, A.S., Ozoguz, S., Kennedy, M.P.: Creation of a complex butterfly attractor using a novel Lorenz-Type system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49, 527–530 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chongxin, L., Ling, L., Tao, L., Peng, L.: A new butterfly-shaped attractor of Lorenz-like system. Chaos Solitans Fractals 28, 1196–1203 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Guo, Y., Qi, G., Hamam, Y.: A multi-wing spherical chaotic system using fractal process. Nonlinear Dyn. 85, 2765–2775 (2016)

    Article  MATH  Google Scholar 

  46. Yu, S., Lu, J., Tang, W.K.S., Chen, G.: A general multiscroll Lorenz system family and its realization via digital signal processors. Chaos 16, 33126–33136 (2006)

    Article  MATH  Google Scholar 

  47. Qi, G., Wang, Z., Guo, Y.: Generation of an eight-wing chaotic attractor from QI 3-D four-wing chaotic system. Int. J. Bifurc. Chaos 22, 1250287–1250296 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Bouallegue, K., Chaari, A., Toumi, A.: Multi-scroll and multi-wing chaotic attractor generated with Julia process fractal. Chaos Solitans Fractals 44, 79–85 (2011)

    Article  MathSciNet  Google Scholar 

  49. Wang, N., Li, C., Bao, H., Chen, M., Bao, B.: Generating multi-scroll chua’s attractors via simplified piecewise-linear chua’s diode. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 4767–4778 (2019)

    Article  Google Scholar 

  50. Yu, S., Tang, W.K.S., Lu, J., Chen, G.: Generation of nxm-wing Lorenz-like attractors from a modified Shimizu-Morioka model. IEEE Trans. Circuits Syst. I Regul. Pap. 55, 1168–1172 (2008)

    Article  Google Scholar 

  51. Tang, W.K.S., Zhong, G.Q., Chen, G., Man, K.F.: Generation of n-scroll attractors via sine function. IEEE Trans. Circuits Syst. I Regul. Pap. 48, 1369–1372 (2001)

    Article  Google Scholar 

  52. Yu, S., Tang, W.K.S.: Generation of nxm-scroll attractors in a two-port RCL network with hysteresis circuits. Chaos Solitons Fractals 39, 821–830 (2009)

    Article  MATH  Google Scholar 

  53. Lu, J., Chen, G., Yu, X., Leung, H.: Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE Trans. Circuits Syst. 51, 2476–2490 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yu, S., Lu, J., Chen, G.: Design and implementation of n-scroll chaotic attractors from a general jerk circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 52, 1459–1476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yu, S., Lu, J., Yu, X., Chen, G.: Design and implementation of grid Multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Syst. I Regul. Pap. 59, 1015–1028 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Singh, P.P., Roy, B.K.: A novel chaotic system without equilibria, with parachute and thumb shapes of Poincare map and its projective synchronisation. Eur. Phys. J. Spec. Top. 229, 1265–1278 (2020)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants or other supports were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Mathematical and simulation analyses were performed by SK. The first draft of the manuscript was written by SK, and corrections or comments on the previous versions and final version of the manuscript were done by PPS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. P. Singh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugandha, K., Singh, P.P. Generation of a multi-scroll chaotic system via smooth state transformation. J Comput Electron 21, 781–791 (2022). https://doi.org/10.1007/s10825-022-01892-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01892-y

Keywords

Navigation