Skip to main content
Log in

Enhancing the design and performance of a gate-all-around (GAA) charge plasma nanowire field-effect transistor with the help of the negative-capacitance technique

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A gate-all-around charge plasma nanowire field-effect transistor (GAA CP NW FET) device using the negative-capacitance technique is introduced, termed the GAA CP NW negative-capacitance (NC) FET. In the face of bottleneck issues in nanoscale devices such as rising power dissipation, new techniques must be introduced into FET structures to overcome their major limitations. Negative capacitance is an efficient effect that can be incorporated into a device to enhance its performance for low-power applications and help to reduce the operating voltage. The Landau–Khalatnikov equation can be applied in such cases to obtain the effective bias. To determine the effects of negative capacitance, lead zirconate titanate (PZT) ferroelectric material, a ceramic material with perovskite properties, is adopted as a gate insulator. This approach diminishes the supply voltage and reduces the power dissipation in the device. Excluding their polarization properties, ferroelectric materials are similar to dielectric materials, and PZT offers abundant polarization with improved reliability and a higher dielectric capacitance. Without proper tuning of the thickness of the PZT material, hysteresis behavior mat occur. Hence, the thickness of the PZT material (tFE) is an essential parameter to optimize the device performance and achieve a reduced threshold voltage for the GAA CP NW NC-FET device proposed herein. Furthermore, varying the thickness of the PZT ferroelectric material can also enhance the performance. When using the highest values of tFE, improved outcomes with an analogously lower operating voltage are observed. The effects of varying tFE on the performance characteristics of the device including the drain current, transconductance, polarized charge, etc. are also interpreted herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ghosh, Dipankar, Parihar, Mukta Singh, Alastair Armstrong, G., Kranti, Abhinav: High-performance junctionless MOSFETs for ultralow-power analog/RF applications. IEEE Electron Device Lett. 33(10), 1477–1479 (2012)

    Article  Google Scholar 

  2. Anand, Sunny, Intekhab Amin, S., Sarin, R.K.: Performance analysis of charge plasma based dual electrode tunnel FET. J. Semicond. 37(5), 054003 (2016)

    Article  Google Scholar 

  3. Mushtaq, Umar, Solay, Leo Raj, Intekhab Amin, S., Anand, Sunny: Design and analog performance analysis of triple material gate based doping-less tunnel field effect transistor. J. Nanoelectron. Optoelectron. 14(8), 1177–1182 (2019)

    Article  Google Scholar 

  4. Ionescu, Adrian M., Riel, Heike: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011)

    Article  Google Scholar 

  5. Solay, Leo Raj, Singh, Sarabdeep, Naveen Kumar, S., Amin, Intekhab, Anand, Sunny: Design of dual-gate P-type IMOS based industrial purpose pressure sensor. Silicon (2020). https://doi.org/10.1007/s12633-020-00785-8

    Article  Google Scholar 

  6. Schaller, Robert R: Moore’s law: past, present and future. IEEE Spectrum 34(6), 52–59 (1997)

    Article  Google Scholar 

  7. Solay, Leo Raj, Sarabdeep Singh, S., Amin, Intekhab, Anand, Sunny: Design and analysis of gate engineered dual material gate double gate impact ionization metal oxide semiconductor. Trans. Electr. Electron. Mater. 20(2), 132–140 (2019)

    Article  Google Scholar 

  8. Veeraraghavan, S., Fossum, J.G.: Short-channel effects in SOI MOSFETs. IEEE Trans. Electron Devices 36(3), 522–528 (1989)

    Article  Google Scholar 

  9. Wang, Tahui, Tse-En Chang, and Chimoon Huang. Interface trap induced thermionic and field emission current in off-state MOSFET’s. In: Proceedings of 1994 IEEE international electron devices meeting, pp. 161–164. IEEE (1994)

  10. Chaudhry, Anurag, Jagadesh Kumar, M.: Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans. Device Mater. Reliab. 4(1), 99–109 (2004) 

    Article  Google Scholar 

  11. Sinha, Saurabh, Greg Yeric, Vikas Chandra, Brian Cline, and Yu Cao. Exploring sub-20nm FinFET design with predictive technology models. In: DAC design automation conference 2012, pp. 283–288. IEEE (2012)

  12. Singh, Rahul Prakash, Khosla, Mamta, Saini, Indu, Kumar, Naveen: Design and analysis of IGZO based junctionless thin film transistor using SOI technology. Silicon 13, 2309–2318 (2020)

    Article  Google Scholar 

  13. Kumar, N., Raman, A.: Performance assessment of the charge-plasma-based cylindrical GAA vertical nanowire TFET with impact of interface trap charges. IEEE Trans. Electron Devices 66(10), 4453–4460 (2019)

    Article  Google Scholar 

  14. Singh, S., Raman, A.: A dopingless gate-all-around (GAA) gate-stacked nanowire FET with reduced parametric fluctuation effects. J. Comput. Electron. 17(3), 967–976 (2018)

    Article  Google Scholar 

  15. Solay, Leo Raj, Pradeep Kumar, Intekhab Amin, and Sunny Anand. Design and analysis of gate engineered gate-all-around (GAA) charge plasma nanowire field effect transistor. In: 2021 6th international conference for convergence in technology (I2CT), pp. 1–5. IEEE (2021)

  16. Lee, I.-H., Yoo, D., Avouris, P., Low, T., Sang-Hyun, Oh.: Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14(4), 313–319 (2019)

    Article  Google Scholar 

  17. Greybush, N.J., Pacheco-Peña, V., Engheta, N., Murray, C.B., Kagan, C.R.: Plasmonic optical and chiroptical response of self-assembled Au nanorod equilateral timers. ACS Nano 13(2), 1617–1624 (2019)

    Google Scholar 

  18. Shreya, S., Kumar, N., Anand, S., Amin, I.: Performance analysis of a charge plasma junctionless nanotube tunnel FET including the negative capacitance effect. J. Electron. Mater. 49(4), 2349–2357 (2020)

    Article  Google Scholar 

  19. Khan, Asif Islam, Chatterjee, Korok, Wang, Brian, Drapcho, Steven, You, Long, Serrao, Claudy, Bakaul, Saidur Rahman, Ramesh, Ramamoorthy, Salahuddin, Sayeef: Negative capacitance in a ferroelectric capacitor. Nature Mater. 14(2), 182–186 (2015)

    Article  Google Scholar 

  20. Singh, Amrita, Naveen Kumar, S., Amin, Intekhab, Anand, Sunny: Implementation of negative capacitance over SiGe sourced doping-less tunnel FET. Superlattices Microstruct. 145, 106580 (2020)

    Article  Google Scholar 

  21. Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8(2), 405–410 (2008)

    Article  Google Scholar 

  22. Gajal, Lubna, Naveen Kumar, S., Amin, Intekhab, Anand, Sunny: Design and performance enhancement of doping-less field effect transistor with the help of negative capacitance technique. Appl. Phys. A 126(1), 1–10 (2020)

    Article  Google Scholar 

  23. Jo, Jaesung, Choi, Woo Young, Park, Jung-Dong., Shim, Jae Won, Hyun-Yong, Yu., Shin, Changhwan: Negative capacitance in organic/ferroelectric capacitor to implement steep switching MOS devices. Nano Lett. 15(7), 4553–4556 (2015)

    Article  Google Scholar 

  24. Rabe Karin M., Matthew Dawber, Céline Lichtensteiger, Charles H. Ahn, and Jean-Marc Triscone. Modern Physics of ferroelectrics: Essenstial background. Phys. Ferroelectr. pp. 1–30 (2007)

  25. Lines, Malcolm E., and Glass, Alastair M. Principles and applications of ferroelectrics and related materials. Oxford university, Clarendon Press, Oxford (2001)

    Book  Google Scholar 

  26. Anand, Sunny, Intekhab Amin, S., Sarin, R.K.: Analog performance investigation of dual electrode doping-less tunnel FET. J. Comput. Electron. 15(1), 94–103 (2016)

    Article  Google Scholar 

  27. Singh, S., Raman, A.: Gate-all-around charge plasma-based dual material gate-stack nanowire FET for enhanced analog performance. IEEE Trans. Electron Devices 65(7), 3026–3032 (2018)

    Article  Google Scholar 

  28. Manual, A.U.: Device simulation software. Silvaco Int, Santa Clara (2008)

    Google Scholar 

  29. Mehta, H., Kaur, H.: Impact of Gaussian doping profile and negative capacitance effect on double-gate junctionless transistors (DGJLTs). IEEE Trans. Electron Devices 65(7), 2699–2706 (2018)

    Article  Google Scholar 

  30. Mehta, H., Kaur, H.: Study on impact of parasitic capacitance on performance of graded channel negative capacitance SOI FET at high temperature. IEEE Trans. Electron Devices 66(7), 2904–2909

    Article  Google Scholar 

  31. Gupta, Ashok Kumar, Raman, Ashish, Kumar, Naveen: Charge-plasma-based negative capacitance ring-FET: design, investigation and reliability analysis. J. Electron. Mater. 49, 4852–4863 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Raj Solay.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solay, L.R., Amin, S.I., Kumar, P. et al. Enhancing the design and performance of a gate-all-around (GAA) charge plasma nanowire field-effect transistor with the help of the negative-capacitance technique. J Comput Electron 20, 2350–2359 (2021). https://doi.org/10.1007/s10825-021-01808-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01808-2

Keywords

Navigation