Skip to main content

Advertisement

Log in

Charge-Plasma-Based Negative Capacitance Ring-FET: Design, Investigation and Reliability Analysis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, an architecture of charge-plasma-based negative capacitance ring-field-effect transistor (ring-NCFET) is proposed and described. Negative capacitance phenomenon is applied to the proposed structure and various parameters such as device characteristics, analog parameters and linearity parameters are analyzed. Negative capacitance helps in scaling down the operating voltage of the proposed device by enhancing the total capacitance and the subthreshold slope. The Landau-Khalatnikov equation was used to attain the effective gate bias across the gate electrode and ferroelectric material. Various calculated device parameters are energy bandgap, electron concentration, hole concentration, electric field variation, potential variation and recombination rate of the dopingless ring-NCFET. The subthreshold slope reduction of 20 mV/decade and approximately twofold increase in drain current at lower gate bias as compared to conventional dopingless ring-FET shows the effectiveness of implementing a negative capacitance technique. Single-gate (SG) dopingless ring-FET (DRing-FET) is compared with SG-DRing-NCFET and double-gate (DG)-DRing-NCFET. The variation of ferroelectric material thickness and interface trap charges (ITCs) is analyzed for device performance optimization and reliability. Various analog/linearity parameters are obtained in the presence of ITCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.S.P. Wong, Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001).

    Article  CAS  Google Scholar 

  2. R. Singh, N. Gupta and K. F. Poole, in 26th IEEE International Conference on Microelectronics, pp. 45–54 (2008).

  3. P.M. Zeitzoff and J.E. Chung, IEEE Circuits Devices Mag. 21, 4–15 (2005).

    Article  Google Scholar 

  4. M.J. Kumar and S. Janardhanan, IEEE Trans. Electron Devices 60, 3285–3290 (2013).

    Article  CAS  Google Scholar 

  5. N. Kumar, A. Raman, Silicon (2019). https://doi.org/10.1007/s12633-019-00355-7.

  6. R.J. Hueting, B. Rajasekharan, C. Salm, and J. Schmitz, IEEE Electron Device Lett. 29, 1367–1369 (2008).

    Article  Google Scholar 

  7. M.J. Kumar and K. Nadda, IEEE Trans. Electron Devices 59, 962–967 (2012).

    Article  CAS  Google Scholar 

  8. N. Jayaswal, A. Raman, N. Kumar, and S. Singh, Superlattices Microstruct. 125, 256–270 (2019).

    Article  CAS  Google Scholar 

  9. D.J. Wouters, J.P. Colinge, and H.E. Maes, IEEE Trans. Electron Devices 37, 2022–2033 (1900).

    Article  Google Scholar 

  10. A. Rusu, G. A. Salvatore, D. Jiménez and A. M. Ionescu in IEEE International Electron Devices Meeting pp. 16–3 (2010)

  11. F.A. McGuire, Y.C. Lin, K. Price, G.B. Rayner, S. Khandelwal, S. Salahuddin, and A.D. Franklin, Nano Lett. 17, 4801–4806 (2017).

    Article  CAS  Google Scholar 

  12. A.I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S.R. Bakaul, R. Ramesh, and S. Salahuddin, Nat. Mater. 14, 182 (2015).

    Article  CAS  Google Scholar 

  13. J. Jo and C. Shin, IEEE Electron Device Lett. 37, 245–248 (2016).

    Article  CAS  Google Scholar 

  14. C.I. Lin, A.I. Khan, S. Salahuddin, and C. Hu, IEEE Trans. Electron Devices 63, 2197–2199 (2016).

    Article  Google Scholar 

  15. A. Saeidi, F. Jazaeri, I. Stolichnov, and A.M. Ionescu, IEEE Trans. Electron Devices 63, 4678–4684 (2016).

    Article  Google Scholar 

  16. J.D. Anderson, J. Merkel, D. Macmahon, and S.K. Kurinec, IEEE J. Electron Devices Soc. 6, 525–534 (2018).

    Article  CAS  Google Scholar 

  17. I. Silvaco, ATLAS User’s Manual, Santa Clara, CA, Ver, 5 (2011)

  18. D. Stauffer, Ferroelectrics 18, 199–211 (1978).

    Article  Google Scholar 

  19. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998).

    Article  CAS  Google Scholar 

  20. A. Saeidi, F. Jazaeri, F. Bellando, I. Stolichnov, G.V. Luong, Q.T. Zhao, S. Mantl, C.C. Enz, and A.M. Ionescu, IEEE Electron Device Lett. 38, 1485–1488 (2017).

    Article  CAS  Google Scholar 

  21. D. Zhou, M. Kamlah, and D. Munz, J. Eur. Ceram. Soc. 25, 425–432 (2005).

    Article  CAS  Google Scholar 

  22. L. Wang, X. Wang, and J. Shi, Ferroelectrics 411, 86–92 (2010).

    Article  Google Scholar 

  23. S. Shreya, N. Kumar, S. Anand, and I. Amin, J. Electron. Mater. 49, 2349–2357 (2020).

    Article  CAS  Google Scholar 

  24. N. Kumar and A. Raman, IEEE Trans. Electron Devices 66, 1468–1474 (2019).

    Article  CAS  Google Scholar 

  25. N. Kumar and A. Raman, IEEE Trans. Electron Devices 66, 4453–4460 (2019).

    Article  CAS  Google Scholar 

  26. A.K. Gupta, A. Raman, and N. Kumar, IEEE Trans. Electron Devices 66, 3506–3512 (2019).

    Article  CAS  Google Scholar 

  27. B. Razavi and R. Behzad, RF Microelectronics, Vol. 1 (Englewood Cliffs, NJ, USA: Prentice-Hall, 1998).

    Google Scholar 

  28. S. Salahuddin and S. Datta, Nano Lett. 8, 405–410 (2008).

    Article  CAS  Google Scholar 

  29. Y. Khatami and K. Banerjee, IEEE Trans. Electron Devices 56, 2752–2761 (2009).

    Article  CAS  Google Scholar 

  30. P. McWhorter and P.S. Winokur, Appl. Phys. Lett. 48, 133–135 (1986).

    Article  CAS  Google Scholar 

  31. J. Madan and R. Chaujar, IEEE Trans. Device Mater. Reliab. 16, 227–234 (2016).

    Article  CAS  Google Scholar 

  32. A. K.Gupta, A. Raman, and N. Kumar, Silicon (2019). https://doi.org/10.1007/s12633-019-00331-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Raman, A. & Kumar, N. Charge-Plasma-Based Negative Capacitance Ring-FET: Design, Investigation and Reliability Analysis. J. Electron. Mater. 49, 4852–4863 (2020). https://doi.org/10.1007/s11664-020-08205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08205-8

Keywords

Navigation