Skip to main content
Log in

Numerical simulations of ultrathin CdTe solar cells with a ZnxCd1−xS window layer and a Cu2O hole transport layer

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

CdTe solar cells are investigated using a solar cell capacitance simulator software. First, a conventional fluorine-doped tin oxide (FTO)/i-SnO2/CdS/CdTe structure is simulated using input experimental data to verify the simulation process. To make the cell more economical, the thickness of the CdTe layer is decreased, resulting in a degradation of the device performance. To decrease the minority-carrier recombination loss of the designed structure, a p-type Cu2O layer is exploited at the back contact as a hole transport electron blocking layer (HT–EBL). To address the performance degradation, a ZnS/CdS bilayer is used as the window layer. The interdiffusion of Cd into the ZnS due to annealing treatment and the formation of ZnxCd1−xS compound are also studied. Cell parameters include the thickness, doping concentration, and carrier lifetime are then optimized to enhance the power conversion efficiency (PCE). The proposed FTO/i-SnO2/Zn0.5Cd0.5S/CdTe/Cu2O configuration shows the best PCE of 17.5%, short-circuit current density (Jsc) of 27.8 mA/cm2, open-circuit voltage (Voc) of 0.87 V, and fill factor of 72.34% under AM1.5G illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Swanson, D.E., Sites, J.R., Sampath, W.S.: Co-sublimation of CdSex Te1x layers for CdTe solar cells. Sol. Energ. Mater. Sol. C. 159, 389–394 (2017)

    Article  Google Scholar 

  2. Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., HoBaillie, A.W.Y.: Solar cell efficiency tables (ver, 53). Prog. Photovolt. Res. Appl. 27, 3–12 (2019)

    Article  Google Scholar 

  3. Wu, X.: High-efficiency polycrystalline CdTe thin-film solar cells. Sol. Energy 77, 803–814 (2004)

    Article  Google Scholar 

  4. Romeo, A., Terheggen, M., Abou-Ras, D., Bätzner, D.L., Haug, F.J., Kälin, M., Rudmann, D., Tiwari, A.N.: Development of thin-film Cu(In, Ga)Se2 and CdTe solar cells. Prog. Photovolt. Res. Appl. 12, 93–111 (2004)

    Article  Google Scholar 

  5. Kc, D., Shah, D.K., Alanzi, A.M., Shaheer Akhtar, M.: Impact of different antireflection layers on cadmium telluride (CdTe) solar cells: a PC1D simulation study. J. Elec. Mater. 50, 2199–2205 (2020)

    Article  Google Scholar 

  6. Shah, D.K., Kc, D., Muddassir, M., Shaheer Akhtar, M., Kim, C.Y., Yang, O.B.: A simulation approach for investigating the performances of cadmium telluride solar cells using doping concentrations, carrier lifetimes, thickness of layers, and band gaps. Sol. Energy 216, 259–265 (2021)

    Article  Google Scholar 

  7. Kc, D., Shah, D.K., Shaheer Akhtar, M., Park, M., Kim, C.Y., Yang, O.B., Pant, B.: Numerical investigation of graphene as a back surface field layer on the performance of cadmium telluride solar cell. Molecules 26(11), 3275 (2021)

    Article  Google Scholar 

  8. Türck, J., Nonnenmacher, H.J., Connor, P.M., Siol, S., Siepchen, B., Heimfarth, J.P., Klein, A., Jaegermann, W.: Copper (I) Oxide (Cu2O) based back contact for p–i–n CdTe solar cells. Prog. Photovoltaics Res. Appl. 24, 1229–1236 (2016)

    Article  Google Scholar 

  9. Tinedert, I.E., Saadoune, A., Bouchama, I., Saeed, M.A.: Numerical modelling and optimization of CdS/CdTe solar cell with incorporation of Cu2O HT–EBL layer. Optical Materials 106, 109970 (2020)

    Article  Google Scholar 

  10. Wang, Y., Miska, P., Pilloud, D., Horwat, D., Mücklich, F., Pierson, J.F.: Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing. J. Appl. Phys. 115, 73505 (2014)

    Article  Google Scholar 

  11. Lauermann, I., Bär, M., Fischer, C.H., et al.: Synchrotron-based spectroscopy for the characterization of surfaces and interfaces in chalcopyrite thin-film solar cells. Sol. Energy Mater. Sol. Cells 95, 1495–1508 (2011)

    Article  Google Scholar 

  12. Hernández-Calderón, V., Vigil-Galán, O., Pulgarín-Agudelo, F.A., Courel, M., Arce-Plaza, A., Cruz-Gandarilla, F., Sánchez-Rodríguez, F.J., Roque-De la Puent, J.: Optimization of CdxZn1xS compound from CdS/ZnS bi-layers deposited by chemical bath deposition for thin film solar cells application. Thin Solid Films 676, 100–107 (2019)

    Article  Google Scholar 

  13. Hernández-Calderón, V., Vigil-Galán, O., Guc, M., Carrillo Osuna, A., Ramirez Velasco, S., Sánchez-Rodríguez, F.J., Vidal-Fuentes, P., Giraldo, S., Saucedo, E., Sánchez, Y.: CdS/ZnS bilayer thin films used as buffer layer in 10%-efficient Cu2ZnSnSe4 solar cells. ACS Appl. Energy Mater. 3(7), 6815–6823 (2020)

    Article  Google Scholar 

  14. Keshav, R., Mahesha, M.G.: Optical and electrical characterization of vacuum deposited n–CdS/n–ZnS bilayers. Sol. Energy 167, 172–178 (2018)

    Article  Google Scholar 

  15. Burgelman, M., Nollet, P., Degrave, S.: Modeling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)

    Article  Google Scholar 

  16. Baines, T., Zoppi, G., Bowen, L., Shalvey, T.P., Mariotti, S., Durose, K., Major, J.D.: Incorporation of CdSe layers into CdTe thin film solar cells. Sol. Energy Mater. Sol. Cell. 180, 196–204 (2018)

    Article  Google Scholar 

  17. Burst, J.M., Duenov, J.N., Albin, D.S., Colegrove, E., Reese, M.O., Aguiar, J.A., Jiang, C.S., Patel, M.K., Al-Jassim, M.M., Kuciauskas, D., Swain, S., Ablekim, T., Lynn, K.G., Metzger, W.K.: CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat. Energy 1, 1–7 (2016)

    Google Scholar 

  18. Abdolahzadeh Ziabari, A., Mohabbati Zindanlou, N., Hassanzadeh, J., Golshahi, S., Bagheri Khatibani, A.: Fabrication and study of single-phase high-hole-mobility CZTS thin films for PV solar cell applications: Influence of stabilizer and thickness. J. Alloy. Compd. 842, 155741 (2020)

    Article  Google Scholar 

  19. Fardi, H., Buny, F.: Characterization and modeling of CdS/CdTe heterojunction thin-film solar cell for high efficiency performance. Int. J. Photoenergy 6, 2013 (2013)

    Google Scholar 

  20. Matin, M.A., Amin, N., Zaharim, A., Sopian, K.: A study towards the possibility of ultra thin CdS/CdTe high efficiency solar cells from numerical analysis. Wseas Trans. Environ. Dev 6(8), 571–580 (2010)

    Google Scholar 

  21. Tingliang, L., Xulin, H., Jingquan, Z., Lianghuan, F.: Effect of ZnO films on CdTe solar cells. J. Semicond. 33(9), 6 (2012)

    Google Scholar 

  22. Aranovich, J.A., Golmayo, D., Fahrenbruch, A.L., Bube, R.H.: Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis. J. Appl. Phys. 51(8), 4260–4268 (2012)

    Article  Google Scholar 

  23. Perrenoud, J., Kranz, L., Buecheler, S., Pianezzi, F., Tiwari, A.N.: The use of aluminum doped ZnO as transparent conductive oxidefor CdS/CdTe solar cells. Thin Solid Films 519(21), 7444–7448 (2011)

    Article  Google Scholar 

  24. Skhouni, O., El Manouni, A., Mari, B., Ullah, H.: Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance. Eur. Phys. J. Appl. Phys. 24602(74), 1–6 (2016)

    Google Scholar 

  25. Han, J., Fu, G., Krishnakumar, V., Liao, C., Jaegermann, W.: Preparation and characterization of ZnS/CdS bi-layer for CdTe solar cell application. J. Phys. Chem. Solids 74(12), 1879–1883 (2013)

    Article  Google Scholar 

  26. Garris, R.L., Mansfield, L.M., Egaas, B., Ramanathan, K.: Low-Cd CIGS solar cells made with a hybrid CdS/Zn(OS) buffer layer. IEEE J. Photovolt. 7, 281–285 (2017)

    Article  Google Scholar 

  27. Nykyruy, L.I., Yavorskyi, R.S., Zapukhlyak, Z.R., Wisz, G., Potera, P.: Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties. Opt. Mater. 92, 319–329 (2019)

    Article  Google Scholar 

  28. Sawicka-Chudy, P., Starowicz, Z., Wisz, G., Yavorskyi, R., Zapukhlyak, Z., Bester, M., Głowa, Ł, Sibiński, M., Cholewa, M.: Simulation of TiO2/CuO solar cells with SCAPS-1D software. Mater. Res. Exp. 6, 085918 (2019)

    Article  Google Scholar 

  29. Islam, M.M., Ishizuka, S., Yamada, A., Sakurai, K., Niki, S., Sakurai, T., Akimoto, K.: CIGS solar cell with MBE-grown ZnS buffer layer. Sol. Energy Mater. Sol. Cells 93, 970–972 (2009)

    Article  Google Scholar 

  30. Hossain, M.S., Rahman, K.S., Islam, M.A., Akhtaruzzaman, M., Misran, H., Alghoul, M.A., Amin, N.: Growth optimization of ZnxCd1xS films on ITO and FTO coated glass for alternative buffer application in CdTe thin film solar cells. Opt. Mater. 86, 270–277 (2018)

    Article  Google Scholar 

  31. Hussain, O.M., Reddy, P.S., Naidu, B.S., Uthanna, S., Reddy, P.J.: Characterization of thin film ZnCdS/CdTe solar cells. Sem. Sci. Tech. 6, 690 (1991)

    Article  Google Scholar 

  32. Hossain, M.S., Rahman, K.S., Karim, M.R., Aijaz, M.O., Dar, M.A., Shar, M.A., Misran, H., Amin, N.: Impact of CdTe thin film thickness in ZnxCd1xS/CdTe solar cell by RF sputtering. Sol. Energy 180, 559–566 (2019)

    Article  Google Scholar 

  33. Hossain, M.S., Amin, N., Razykov, T.: Prospects of back contacts with back surface fields in high efficiency ZnxCd1xS/CdTe solar cells from numerical modelling. Chalcogenide Lett. 8(3), 187–197 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Hassnzadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoupour, E., Hassnzadeh, J., Abdolahzadeh Ziabari, A. et al. Numerical simulations of ultrathin CdTe solar cells with a ZnxCd1−xS window layer and a Cu2O hole transport layer. J Comput Electron 20, 2501–2510 (2021). https://doi.org/10.1007/s10825-021-01779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01779-4

Keywords

Navigation