Skip to main content
Log in

Exploring the electronic and optical absorption properties for homo- and hetero-pyrrole-graphene quantum dots

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Density functional theory as well as molecular mechanics force field (MMFF94) techniques are used to study intermolecular/intramolecular interactions, band offsets, physicochemical correlations, and nonlinear optical properties for 12 designed homo- and hetero-pyrrole-graphene quantum dots (PGQDs). Also, force field energy, minimum and maximum projection area, Van der Waals volume and 3D surface area, and total polar surface area for homo- and hetero-PGQDs are calculated. In addition, UV–Vis absorption spectra for homo- and hetero-PGQDs are computed. The interfacial electrons carry through functionalized GQDs with pyrroles bearings will help in screening the desired applications for proposed PGQDs as optoelectronic and memory switches devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Qiu, Y., Zhang, Y.: A Ademiloye and ZJCMS Wu: molecular dynamics simulations of single-layer and rotated double-layer graphene sheets under a high velocity impact by fullerene. Comput. Mater. Sci. 182, 109 (2020)

    Article  Google Scholar 

  2. Cui, T., Mukherjee, S., Sudeep, P.M., Colas, G., Najafi, F., Tam, J., Ajayan, P.M., Singh, C.V., Sun, Y., Filleter, T.: Fatigue of graphene. Nat. Mater. 19(4), 405 (2020)

    Article  Google Scholar 

  3. Ye, X., Zhu, Y., Jiang, H., Yue, Z., Wang, L., Wan, Z., Jia, C.: Constructing molecules supported holey graphene sheets framework in compact graphene film to achieve synergistic effect for ion transport and high gravimetric/volumetric capacitances. J. Power Sources 441, 227167 (2019)

    Article  Google Scholar 

  4. Han, X.Y., Zhao, D.L., Meng, W.J., Yang, H.X., Zhao, M., Duan, Y.J., Tian, X.M.: Graphene caging silicon nanoparticles anchored on graphene sheets for high performance Li-ion batteries. Appl. Sur. Sci. 484, 11 (2019)

    Article  Google Scholar 

  5. You, R., Liu, Y.Q., Hao, Y.L., Han, D.D., Zhang, Y.L., You, Z.: Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32(15), 1901981 (2020)

    Article  Google Scholar 

  6. Yan, C., Lee, P.S.: Stretchable energy storage and conversion devices. Small 10(17), 3443 (2014)

    Article  Google Scholar 

  7. Wang, B., Ruan, T., Chen, Y., Jin, F., Peng, L., Zhou, Y., Wang, D., Dou, S.: Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22 (2020)

    Article  Google Scholar 

  8. Sadeghzadeh, S.: Nanoparticle mass detection by single and multilayer graphene sheets: theory and simulations. Appl. Math. Model. 40(17–18), 7862 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shen, C., Chu, Y., Wu, Q., Li, N., Wang, S., Zhao, Y., Tang, J., Liu, J., Tian, J., Watanabe, K.: Correlated states in twisted double bilayer graphene. Nat. Phys. 16(5), 520 (2020)

    Article  Google Scholar 

  10. Xue, C., Gao, H., Hu, Y., Hu, G.: Hyperelastic characteristics of graphene natural rubber composites and reinforcement and toughening mechanisms at multi-scale. Compos. Struct. 228, 111365 (2019)

    Article  Google Scholar 

  11. Yang, H., Yuan, L., Yao, X., Fang, D.: Piezoresistive response of graphene rubber composites considering the tunneling effect. J. Mech. Phys. Solids 139, 103943 (2020)

    Article  Google Scholar 

  12. Böhm, S.: Graphene against corrosion. Nature Nanotechnol. 9(10), 741 (2014)

    Article  Google Scholar 

  13. Hao, S., Wang, J., Lavorgna, M., Fei, G., Wang, Z., Xia, H.: Constructing 3D graphene network in rubber nanocomposite via liquid-phase redispersion and self-assembly. ACS Appl. Mater. Interfaces. 12(8), 9682 (2020)

    Article  Google Scholar 

  14. Mao, H.Y., Laurent, S., Chen, W., Akhavan, O., Imani, M., Ashkarran, A.A., Mahmoudi, M.: Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev. 113(5), 3407 (2013)

    Article  Google Scholar 

  15. Alinejad, A., Raissi, H., Hashemzadeh, H.: Understanding co-loading of doxorubicin and camptothecin on graphene and folic acid-conjugated graphene for targeting drug delivery: classical MD simulation and DFT calculation. J. Biomol. Struct. Dyn. 38(9), 2737 (2020)

    Article  Google Scholar 

  16. Figueroa, T., Aguayo, C., Fernández, K.: Design and characterization of chitosan-graphene oxide nanocomposites for the delivery of proanthocyanidins. Int. J. Nanomed. 15, 1229 (2020)

    Article  Google Scholar 

  17. Raghavan, A., Sarkar, S., Nagappagari, L.R., Bojja, S., MuthukondaVenkatakrishnan, S., Ghosh, S.: Decoration of graphene quantum dots on TiO2 nanostructures: photosensitizer and cocatalyst role for enhanced hydrogen generation. Ind. Eng. Chem. Res. 59(29), 13060 (2020)

    Article  Google Scholar 

  18. Sharma, V., Kagdada, H.L., Wang, J., Jha, P.K.: Hydrogen adsorption on pristine and platinum decorated graphene quantum dot: A first principle study. Int. J. Hydrogen Energy 45(44), 23977 (2020)

    Article  Google Scholar 

  19. Hu, Y., Chen, W., Lei, T., Jiao, Y., Wang, H., Wang, X., Xiong, J.: Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy 68, 104373 (2020)

    Article  Google Scholar 

  20. Kang, S., Jeong, Y.K., Ryu, J.H., Son, Y., Kim, W.R., Lee, B., Kim, K.M.: Pulsed laser ablation based synthetic route for nitrogen-doped graphene quantum dots using graphite flakes. Appl. Surf. Sci. 506, 144998 (2020)

    Article  Google Scholar 

  21. Liu, Q., Sun, J., Gao, K., Chen, N., Sun, X., Ti, D., Qu, L.: Graphene quantum dots for energy storage and conversion: from fabrication to applications. Mater. Chem. Front. 4(2), 421 (2020)

    Article  Google Scholar 

  22. Liu, H., Li, C., Qian, Y., Hu, L., Fang, J., Tong, W., Wang, H.: Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials 232, 119700 (2020)

    Article  Google Scholar 

  23. Sarkar, S., Ramanathan, N., Gopi, R., Sundararajan, K.: Pyrrole multimers and pyrrole-acetylene hydrogen bonded complexes studied in N2 and para-H2 matrixes using matrix isolation infrared spectroscopy and ab initio computations. J. Mol. Struct. 1149, 387 (2017)

    Article  Google Scholar 

  24. Ramanathan, N., Sankaran, K., Sundararajan, K.: Nitrogen: a new class of π-bonding partner in hetero π-stacking interaction. J. Phys. Chem. A 121(47), 9081 (2017)

    Article  Google Scholar 

  25. Sarkar, S., Ramanathan, N., Sundararajan, K.: Effect of methyl substitution on the N–H··· O interaction in complexes of pyrrole with water, methanol, and dimethyl ether: matrix isolation infrared spectroscopy and ab initio computational studies. J. Phys. Chem. A 122(9), 2445 (2018)

    Article  Google Scholar 

  26. Sarkar, S., Ramanathan, N., Sruthi, P.K., Sundararajan, K.: Computational and experimental evidence of N-H… π and cooperative πN… π∗ interactions in pyrrole… benzene and pyrrole… ethylene heterodimers at low temperatures. J. Mol. Struct. 1209, 127 (2020)

    Article  Google Scholar 

  27. Müller, S., Paulus, J., Mattay, J., Ihmels, H., Dodero, V.I., Sewald, N.: Photocontrolled DNA minor groove interactions of imidazole/pyrrole polyamides. Beilstein J. Organic Chem. 16(1), 60 (2020)

    Article  Google Scholar 

  28. Sarkar, S., Ramanathan, N., Sruthi, P.K., Sundararajan, K.: Conformations of diethyl ether and its interaction with pyrrole at low temperatures. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 213, 361 (2019)

    Article  Google Scholar 

  29. Petrov, A.A., Fakhurtdinova, A.R., Khachatrian, A.A., Rakipov, I.T., Akhmadiyarov, A.A., Solomonov, B.N.: The intermolecular interactions of methanol, pyrrole and chloroform in a binary solvent. Thermochim. Acta 689, 178640 (2020)

    Article  Google Scholar 

  30. Kalluvettukuzhy, N.K., Pagidi, S., Prasad Nandi, R., Thilagar, P.: Exploiting N− H–π interactions in 2-(dimesitylboraneyl)-1H-pyrrole for luminescence enhancement. Asian J. Organic Chem. 9(4), 644 (2020)

    Article  Google Scholar 

  31. Le, D.T.H., Tri, N.N., Man, N.T.H., Trung, N.T.: A theoretical study of X-H∙∙∙ π and X∙∙∙ π interactions in the complexes of furan, thiophene, pyrrole and hydrogen halides. Vietnam J. Chem. 58(2), 151 (2020)

    Article  Google Scholar 

  32. Vandana, M., Ashokkumar, S., Vijeth, H., Yesappa, L., Devendrappa, H.: Synthesis and characterization of polypyrrole-graphene quantum dots nanocomposites for supercapacitor application. In: AIP Conference Proceedings, (2115), p. 030535. AIP Publishing LLC, City (2019)

    Google Scholar 

  33. Sert, Y., Sreenivasa, S., Doğan, H., Manojkumar, K.E., Suchetan, P.A., Ucun, F.: FT-IR, Laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc 127, 122 (2014)

    Article  Google Scholar 

  34. El-Mansy, M.A.M.: Quantum chemical studies on structural, vibrational, nonlinear optical properties and chemical reactivity of indigo carmine dye. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 183, 284 (2017)

    Article  Google Scholar 

  35. El-Nahass, M.M., Kamel, M.A., El-Barbary, A.A., El-Mansy, M.A.M., Ibrahim, M.: FT-IR spectroscopic analyses of 3-methyl-5-pyrazolone (MP). Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 111, 37 (2013)

    Article  Google Scholar 

  36. Shoormasti, A.S., Abbasi, A., Orouji, A.A.: Using energy band engineering to improve heterojunction solar cells efficiency. Optik 218, 165243 (2020)

    Article  Google Scholar 

  37. El-Barbary, A.A., El-Nahass, M.M., Kamel, M.A., El-Mansy, M.A.M.: FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of P-methyl acetanilide. J. Appl. Sci. Res. 11, 1977 (2009)

    Google Scholar 

  38. Ibrahim, M., El-Barbary, A.A., El-Nahass, M.M., Kamel, M.A., El-Mansy, M.A.M., Asiri, A.M.: On the spectroscopic analyses of (E)-3-(dicyclopropyl methylene)-dihydro-4-[1-(2, 5 dimethylfuran-3-yl) ethylidene] furan-2, 5-dione. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 87, 202 (2012)

    Article  Google Scholar 

  39. El-Mansy, M.A.M., El-Nahass, M.M., Khusayfan, N.M., El-Menyawy, E.M.: DFT approach for FT-IR spectra and HOMO–LUMO energy gap for N-(p-dimethylaminobenzylidene)-p-nitroaniline (DBN). Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 111, 217 (2013)

    Article  Google Scholar 

  40. Ibrahim, M., El-Nahass, M., Kamel, M., El-Barbary, A., Wagner, B., El-Mansy, M.: On the spectroscopic analyses of thioindigo dye. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 113, 332 (2013)

    Article  Google Scholar 

  41. Soliman, H.S., Eid, K.M., Ali, H.A.M., El-Mansy, M.A.M., Atef, S.M.: FT-IR spectroscopic analyses of 2-(2-furanylmethylene) propanedinitrile. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 105, 545 (2013)

    Article  Google Scholar 

  42. Valsaraj, K.T., Thibodeaux, L.J.: Relationships between micelle-water and octanol-water partition constants for hydrophobic organics of environmental interest. Water Res. 23(2), 183 (1989)

    Article  Google Scholar 

  43. Amézqueta, S., Subirats, X., Fuguet, E., Rosés, M., Ràfols, C.: Octanol-Water Partition CONSTANT, in Liquid-Phase Extraction, p. 183. Elsevier (2020)

    Book  Google Scholar 

  44. Padron, J.A., Carrasco, R., Pellon, R.F.: Molecular descriptor based on a molar refractivity partition using Randic-type graph-theoretical invariant. J. Pharm. Pharmaceut. Sci 5(3), 258 (2002)

    Google Scholar 

  45. Borges, N.M., Kenny, P.W., Montanari, C.A., Prokopczyk, I.M., Ribeiro, J.F.R., Rocha, J.R., Sartori, G.R.: The influence of hydrogen bonding on partition coefficients. J. Comput. Aided Mol. Des. 31(2), 163 (2017)

    Article  Google Scholar 

  46. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R., Robins, R.K.: Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inf. Comput. Sci. 29, 163 (1989)

    Article  Google Scholar 

  47. Du, Q., Mezey, P.G., Chou, K.C.: Heuristic molecular lipophilicity potential (HMLP): A 2D-QSAR study to LADH of molecular family pyrazole and derivatives. J. Comput. Chem.. 26(5), 461 (2005)

    Article  Google Scholar 

  48. Jahan, R., Bodratti, A.M., Tsianou, M., Alexandridis, P.: Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci. 275, 102 (2020)

    Article  Google Scholar 

  49. Liu, Q., Guan, J., Qin, L., Zhang, X., Mao, S.: Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today 25(1), 150–159 (2020)

    Article  Google Scholar 

  50. Szafrański, P.W., Trybula, M.E., Kasza, P., Cegła, M.T.: Following the oxidation state of organosulfur compounds with NMR: experimental data versus DFT calculations and database-powered NMR prediction. J. Mol. Struct. 1202, 127 (2020)

    Article  Google Scholar 

  51. Ali, M.R., Mezei, M.: Observation of quantum signature in rivastigmine chemical bond break-up and quantum energetics, spectral studies of anti-Alzheimer inhibitors. J. Biomol. Struct. Dyn. 39(1), 118–128 (2021)

    Article  Google Scholar 

  52. Ali, I., Mahmood, L.M., Mehdar, Y.T., Aboul-Enein, H.Y., Said, M.A.: Synthesis, characterization, simulation, DNA binding and anticancer activities of Co (II), Cu (II), Ni (II) and Zn (II) complexes of a Schiff base containing o-hydroxyl group nitrogen ligand. Inorg. Chem. Commun. 118, 108004 (2020)

    Article  Google Scholar 

  53. Dimova, V., Jankulovska, M.S.: Application of topological descriptors in QSAR modeling: substituted hydrazones used as a model system. Lett. Drug Design Disc. 17(3), 253 (2020)

    Article  Google Scholar 

  54. Ertl, P., Rohde, B., Selzer, P.: Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43(20), 3714 (2000)

    Article  Google Scholar 

  55. Shityakov, S., Neuhaus, W., Dandekar, T., Förster, C.: Analyzing molecular polar surface descriptors to predict blood-brain barrier permeation. J. Neuroimmune Pharmacol. 7, 55 (2012)

    Google Scholar 

  56. Frisch, G.W.T.M.J., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian09. Revision A Inc., Wallingford CT (2009)

    Google Scholar 

  57. Frisch, A., Dennington, R., Keith, T., Millam, J., Nielsen, A., Holder, A., Hiscocks, J.: Gauss view version 5 user manual. Gaussian Inc., Wallingford, CT, USA. (2009)

  58. Halgren, T.A.: Merck molecular force field I basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17(5–6), 490 (1996)

    Article  Google Scholar 

  59. Kaminski, G., Jorgensen, W.L.: Performance of the AMBER94, MMFF94, and OPLS-AA force fields for modeling organic liquids. J. Phys. Chem. 100(46), 18010 (1996)

    Article  Google Scholar 

  60. Csizmadia, P.: MarvinSketch and MarvinView: molecule applets for the World Wide Web (1999).

  61. Olah, M.: Molecular fragment volume calculation for QSAR studies by the MTD-method. Rev. Roum. Chim. 45(12), 1123–1125 (2000)

    Google Scholar 

  62. Bode, J.W.: Reactor ChemAxon Ltd., Maramaros koz 2/a, Budapest, 1037 Hungary. www.chemaxon.com. Contact ChemAxon for pricing information ACS Publications, City (2004)

  63. Liao, C., Sitzmann, M., Pugliese, A., Nicklaus, M.C.: Software and resources for computational medicinal chemistry. Fut. Med. Chem. 3(8), 1057 (2011)

    Article  Google Scholar 

  64. Prasad, S., Aljaafreh, M.J., Masilamani, V., AlSalhi, M.S., Mujamammi, W.M.: Time-resolved excited state dynamics of super-exciplex in the coumarin dye laser. J. Mol. Liq. 315, 113 (2020)

    Article  Google Scholar 

  65. Schmiermund, T.: DIE AVOGADRO-KONSTANTE: entstehung einer naturkonstante. Springer, New York (2020)

    Book  Google Scholar 

  66. Schmiermund, T.: Die Avogadro-Konstante

  67. Wu, C., Liu, S., Zhang, S., Yang, Z.: Molcontroller: a VMD graphical user interface featuring molecule manipulation. J. Chem. Inf. Model. 60(10), 5126 (2020)

    Article  Google Scholar 

  68. Wu, C., Liu, S., Zhang, S., & Yang, Z.: Molcontroller: a VMD graphical user interface for manipulating molecules (2020)

Download references

Author information

Authors and Affiliations

Authors

Contributions

MAMEl-M contributed to conceptualization, methodology, analysis, writing-original draft, editing, and reviewing; AS contributed to methodology, analysis, writing, and editing; WOY contributed to calculations, data curing, analysis, writing, and editing; KFK contributed to calculations, data curing, analysis, writing, editing.

Corresponding author

Correspondence to M. A. M. El-Mansy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 6.

Table 6 Calculated polarizability α (× 10−24 esu) and hyperpolarizability βtot (× 10−30 esu) tensors for decorated graphene-pyrrole nanosheets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Mansy, M.A.M., Suvitha, A., Osman, W. et al. Exploring the electronic and optical absorption properties for homo- and hetero-pyrrole-graphene quantum dots. J Comput Electron 20, 2387–2402 (2021). https://doi.org/10.1007/s10825-021-01773-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01773-w

Keywords

Navigation