Skip to main content

Advertisement

Log in

The Wigner function negative value domains and energy function poles of the harmonic oscillator

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

For a quantum harmonic oscillator, an explicit expression that describes the energy distribution as a coordinate function is obtained. The presence of the energy function poles is shown for the quantum system in domains where the Wigner function has negative values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium Phys. Rev. 40, 749–759 (1932)

    MATH  Google Scholar 

  2. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244–1247 (1993)

    Article  Google Scholar 

  3. Casado, A., Guerra, S., Plácido, J.: Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion. J. Phys. B. Mol. Opt. Phys. 41, 045501 (2008)

    Article  Google Scholar 

  4. Andersen, U., Neergaard-Nielsen, J., van Loock, P., et al.: Hybrid discrete- and continuous-variable quantum information. Nature Phys. 11, 713–719 (2015)

    Article  Google Scholar 

  5. Claasen, T.A.C.M., Mecklenbräuker, W.F.G.: The Wigner distribution—a tool for time-frequency signal analysis II: discrete-time signals, part 2. Philips J. Res. 35, 276–300 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Bartlett, M.S.: Negative probability. Proc. Cambridge Philos. Soc. 41, 71–73 (1945)

    Article  MathSciNet  Google Scholar 

  7. Feynman, R.P.: Negative Probabilities in Quantum Mechanics. Routledge, London (1987)

    Google Scholar 

  8. Scully, M.O., Walther, H., Schleich, W.P.: Feynman’s approach to negative probability in quantum mechanics. Phys. Rev. A. 49, 1562–1566 (1994)

    Article  MathSciNet  Google Scholar 

  9. Siyouri, F., El Baz, M., Hassouni, Y.: The negativity of Wigner function as a measure of quantum correlations. Quantum Inf. Process. 15, 4237–4252 (2016)

    Article  MathSciNet  Google Scholar 

  10. Husimi, K.: Some Formal Properties of the Density Matrix Proc. Phys. Math. Soc. Japan. 22, 264–314 (1940)

    MATH  Google Scholar 

  11. Кano, Y.: A new phase-space distribution function in the statistical theory of the electromagnetic field. J. Math. Phys. 6, 1913–1915 (1965)

    Article  MathSciNet  Google Scholar 

  12. Glauber, R.J.: Photon correlations. Phys. Rev. Lett. 10, 84–86 (1963)

    Article  MathSciNet  Google Scholar 

  13. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277–279 (1963)

    Article  MathSciNet  Google Scholar 

  14. Perepelkin, E.E., Sadovnikov, B.I., Inozemtseva, N.G.: The quantum mechanics of high-order kinematic values. Ann Phys. 401, 59–90 (2019)

    Article  MathSciNet  Google Scholar 

  15. Perepelkin, E.E., Sadovnikov, B.I., Inozemtseva, N.G.: Paradigm of infinite dimensional phase space Understanding the Schrödinger Equation: Some Non-Linear Perspectives United States, p. 330. Nova Science Publishers (2020)

  16. Perepelkin, E.E., Sadovnikov, B.I., Inozemtseva, N.G., Burlakov, E.V.: Wigner function of a quantum system with polynomial potential. J. Statist. Mech. Theory Exp. 2020 053105 (2020)

  17. Vlasov, A.A.: Many-Particle Theory and Its Application to Plasma. Gordon and Breach, New York (1961)

    Google Scholar 

  18. Sadovnikov, B.I., Inozemtseva, N.G., Perepelkin, E.E.: Generalized phase space and conservative systems. Dokl. Math. 88(1), 457–459 (2013)

    Article  MathSciNet  Google Scholar 

  19. Perepelkin, E.E., Sadovnikov, B.I., Inozemtseva, N.G.: The properties of the first equation of the Vlasov chain of equations. J. Statist. Mech. Theory Exp. 2015 P05019 (2015)

  20. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables I and II. Phys. Rev. 85, 166–193 (1952)

    Article  MathSciNet  Google Scholar 

  21. Bohm, D., Hiley, B.J., Kaloyerou, P.N.: An ontological basis for the quantum theory. Phys. Rep. 144, 321–375 (1987)

    Article  MathSciNet  Google Scholar 

  22. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

  23. de Broglie, L.: Une interpretation causale et non lineaire de la mecanique ondulatoire: la theorie de ladouble solution. Gauthiers-Villars, Paris (1956)

    MATH  Google Scholar 

  24. Moyal E. Quantum mechanics as a statistical theory Proceedings of the Cambridge Philosophical Society.1949. 45. 99–124

  25. Perepelkin, E.E., Sadovnikov, B.I., Inozemtseva, N.G., Burlakov, E.V.: Explicit form for the kernel operator matrix elements in eigenfunction basis of harmonic oscillator. J. Statist. Mech. Theory Exp. 2020, 023109 (2020)

  26. Borwein, D., Borwein, J.M., Crandall, R.E.: Effective Laguerre asymptotics. SIAM J. Numer. Anal. 46(6), 3285–3312 (2008). https://doi.org/10.1137/07068031X

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the RFBR No. 18-29-10014. This research was supported by the Interdisciplinary Scientific and Educational School of Moscow University “Photonic and Quantum Technologies. Digital Medicine.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Perepelkin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

From equations (6), (8), (9), (10), (17) and (16) for a harmonic oscillator, it follows that

$$\frac{1}{{f_{1} }}\frac{\partial P}{{\partial x}} = \frac{1}{{f_{1} }}\int\limits_{ - \infty }^{ + \infty } {v^{2} \frac{{\partial f_{2,n} }}{\partial x}} dv = - \frac{1}{m}\frac{{\partial U_{1} }}{\partial x} = - \omega^{2} x,$$

where in the one-dimensional case (9) the notation of \(P_{\mu \lambda }\) is changed to \(P\)

$$\frac{x}{{\sigma_{x}^{2} }}\int\limits_{ - \infty }^{ + \infty } {v^{2} F^{\prime}_{n} } \left( {\tilde{\varepsilon }} \right)dv = - \omega^{2} xf_{1,n} = - \omega^{2} x\int\limits_{ - \infty }^{ + \infty } {F_{n} } \left( {\tilde{\varepsilon }} \right)dv,$$
$$0 = \int\limits_{ - \infty }^{ + \infty } {\left( {v^{2} F^{\prime}_{n} \left( {\tilde{\varepsilon }} \right) + \sigma_{x}^{2} \omega^{2} F_{n} \left( {\tilde{\varepsilon }} \right)} \right)} dv = \int\limits_{ - \infty }^{ + \infty } {\left( {v^{2} \frac{{\partial S_{2,n} }}{{\partial \tilde{\varepsilon }}} + \sigma_{x}^{2} \omega^{2} } \right)F_{n} \left( {\tilde{\varepsilon }} \right)} dv = f_{1,n} \left\langle {v^{2} \frac{{\partial S_{2,n} }}{{\partial \tilde{\varepsilon }}} + \sigma_{x}^{2} \omega^{2} } \right\rangle ,$$
$$\left\langle {v^{2} \frac{{\partial S_{2,n} }}{{\partial \tilde{\varepsilon }}} + \sigma_{x}^{2} \omega^{2} } \right\rangle = 0,\left\langle {v^{2} \frac{{\partial S_{2,n} }}{{\partial \tilde{\varepsilon }}}} \right\rangle = - \sigma_{x}^{2} \omega^{2} ,$$
(A.1)

where \(S_{2,n} = {\text{Ln}} f_{2,n}\) Rewriting condition (7) in the form \(P_{\mu \lambda } = - \alpha^{2} f_{1,n} \frac{{\partial^{2} S_{1,n} }}{{\partial x^{\mu } \partial x^{\lambda } }}\), \(S_{1,n} = {\text{Ln}} f_{1,n}\), we obtain

$$\frac{1}{{f_{1,n} }}\int\limits_{ - \infty }^{ + \infty } {v^{2} f_{2,n} \left( {x,v} \right)dv} = - \alpha^{2} \frac{{\partial^{2} S_{1,n} }}{{\partial x^{2} }},\left\langle {v^{2} } \right\rangle = - \alpha^{2} \frac{{\partial^{2} S_{1,n} }}{{\partial x^{2} }}.$$
(A.2)

Substitute the distribution functions (14) into expressions (A.1) and (A.2). Let us start with expression (A.1).

$$S_{2,n} = {\text{Ln}} F_{n} \left( {\tilde{\varepsilon }} \right) = {\text{Ln}} B_{n} - \tilde{\varepsilon } + {\text{Ln}} L_{n} \left( {2\tilde{\varepsilon }} \right),\,\,\,\frac{{\partial S_{2,n} }}{{\partial \tilde{\varepsilon }}} = - 1 + 2\frac{{L_{n}^{\prime } \left( {2\tilde{\varepsilon }} \right)}}{{L_{n} \left( {2\tilde{\varepsilon }} \right)}},$$
(A.3)

where \(B_{n} = \frac{{\left( { - 1} \right)^{n} }}{{2\pi \sigma_{v} \sigma_{x} }}\) Averaging expression (A.3) using (A.1), we obtain

$$\sigma_{x}^{2} \omega^{2} = \frac{{B_{n} }}{{f_{1,n} }}\int\limits_{ - \infty }^{ + \infty } {v^{2} e^{{ - \tilde{\varepsilon }}} \left( {L_{n} \left( {2\tilde{\varepsilon }} \right) + 2L_{n - 1}^{\left( 1 \right)} \left( {2\tilde{\varepsilon }} \right)} \right)} \,dv,$$
(A.4)

where we take into account that \(L_{n}^{\prime } = L^{\prime}_{n - 1} - L_{n - 1}\), \(L_{s}^{{\left( {\mu + 1} \right)}} = \sum\limits_{k = 0}^{s} {L_{k}^{\left( \mu \right)} }\) Considering the expression \(L_{n}^{\left( \mu \right)} \left( x \right) = L_{n}^{{\left( {\mu + 1} \right)}} \left( x \right) - L_{n - 1}^{{\left( {\mu + 1} \right)}} \left( x \right)\) which at \(\mu = 0\) will be \(L_{n}^{{}} \left( x \right) = L_{n}^{\left( 1 \right)} \left( x \right) - L_{n - 1}^{\left( 1 \right)} \left( x \right)\), expression (A.4) will take the form:

$$\frac{{\sigma_{v}^{2} }}{{B_{n} }}f_{1,n} = \int\limits_{ - \infty }^{ + \infty } {v^{2} e^{{ - \tilde{\varepsilon }}} \left( {L_{n}^{\left( 1 \right)} \left( {2\tilde{\varepsilon }} \right) + L_{n - 1}^{\left( 1 \right)} \left( {2\tilde{\varepsilon }} \right)} \right)} \,dv.$$
(A.5)

The generalized Laguerre polynomials satisfy the relations

$$\begin{gathered} L_{n}^{\left( 1 \right)} \left( {2\tilde{\varepsilon }} \right) = \sum\limits_{k = 0}^{n} {L_{k}^{{}} \left( {\frac{{v^{2} }}{{\sigma_{v}^{2} }}} \right)L_{n - k}^{{}} \left( {\frac{{x^{2} }}{{\sigma_{x}^{2} }}} \right),\,\,\,} \hfill \\ L_{n - 1}^{\left( 1 \right)} \left( {2\tilde{\varepsilon }} \right) = \sum\limits_{k = 0}^{n - 1} {L_{k}^{{}} \left( {\frac{{v^{2} }}{{\sigma_{v}^{2} }}} \right)L_{n - 1 - k}^{{}} \left( {\frac{{x^{2} }}{{\sigma_{x}^{2} }}} \right)} . \hfill \\ \end{gathered}$$
(A.6)

Substituting (A.6) into (A.4), we obtain

$$\left( { - 1} \right)^{n} \frac{\sqrt \pi }{{2^{n + 1} n!}}H_{n}^{2} \left( {\frac{x}{{\sqrt 2 \sigma_{x} }}} \right) = \sum\limits_{k = 1}^{n} {L_{n - k}^{{}} \left( {\frac{{x^{2} }}{{\sigma_{x}^{2} }}} \right)} \left( {J_{k} + J_{k - 1} } \right) + L_{n}^{{}} \left( {\frac{{x^{2} }}{{\sigma_{x}^{2} }}} \right)J_{0} ,$$
(A.7)

where

$$J_{k} = \int\limits_{ - \infty }^{ + \infty } {\tau^{2} e^{{ - \tau^{2} }} L_{k}^{{}} \left( {2\tau^{2} } \right)} \,d\tau ,\,\,\,\tau = \frac{v}{{\sqrt 2 \sigma_{v}^{{}} }}.$$
(A.8)

Expression (A.7) allows representing the square of the Hermite polynomials \(H_{n}^{2}\) in terms of the Laguerre polynomials \(L_{k}^{{}}\) Let us calculate the integral (A.8).

$$J_{k} = \frac{1}{2}\int\limits_{ - \infty }^{ + \infty } {e^{{ - \tau^{2} }} L_{k}^{{}} \left( {2\tau^{2} } \right)d\tau } - 2J_{k - 1} + 2\int\limits_{ - \infty }^{ + \infty } {\tau^{2} e^{{ - \tau^{2} }} L_{k - 1}^{\prime } \left( {2\tau^{2} } \right)d\tau } .$$
(A.9)

Considering that \(\int\limits_{ - \infty }^{ + \infty } {e^{{ - \tau^{2} }} L_{k} \left( {2\tau^{2} } \right)} \,d\tau = \left( { - 1} \right)^{k} \frac{\sqrt \pi }{{2^{k} k!}}H_{k}^{2} \left( 0 \right)\), we get

$$J_{k} = \left( { - 1} \right)^{k} \frac{\sqrt \pi }{{2^{k + 1} k!}}H_{k}^{2} \left( 0 \right) - 2J_{k - 1} + 2\int\limits_{ - \infty }^{ + \infty } {\tau^{2} e^{{ - \tau^{2} }} L_{k - 1}^{\prime } \left( {2\tau^{2} } \right)d\tau } ,$$

and hence

$$J_{k - 1} = \left( { - 1} \right)^{k - 1} \frac{\sqrt \pi }{{2^{k} \left( {k - 1} \right)!}}H_{k - 1}^{2} \left( 0 \right) - 2J_{k - 2} + 2\int\limits_{ - \infty }^{ + \infty } {\tau^{2} e^{{ - \tau^{2} }} L_{k - 1}^{\prime } \left( {2\tau^{2} } \right)d\tau } .$$
(A.10)

Substituting (A.10) into expression (A.9), we obtain

$$J_{k} = \left( { - 1} \right)^{k} \frac{\sqrt \pi }{{2^{k + 1} k!}}H_{k}^{2} \left( 0 \right) + \left( { - 1} \right)^{k} \frac{\sqrt \pi }{{2^{k - 1} \left( {k - 1} \right)!}}H_{k - 1}^{2} \left( 0 \right) + 2J_{k - 2} - 2\int\limits_{ - \infty }^{ + \infty } {\tau^{2} e^{{ - \tau^{2} }} L_{k - 2}^{\prime } \left( {2\tau^{2} } \right)d\tau .}$$
(A.11)

Then, let us carry out a similar substitution procedure for the integrals \(J_{k - 2}\) and \(J_{k - 3}\):

$$\begin{gathered} J_{k} = \left( { - 1} \right)^{k} \frac{\sqrt \pi }{{2^{k + 1} k!}}H_{k}^{2} \left( 0 \right) + \left( { - 1} \right)^{k} \frac{\sqrt \pi }{{2^{k - 1} \left( {k - 1} \right)!}}H_{k - 1}^{2} \left( 0 \right) + \left( { - 1} \right)^{k} \frac{\sqrt \pi }{{2^{k - 2} \left( {k - 2} \right)!}}H_{k - 2}^{2} \left( 0 \right) - \hfill \\ - 2J_{k - 3} + 2\int\limits_{ - \infty }^{ + \infty } {\tau^{2} e^{{ - \tau^{2} }} L_{k - 3}^{\prime } \left( {2\tau^{2} } \right)d\tau } . \hfill \\ \end{gathered}$$
(A.12)
$$\begin{gathered} J_{k} = \left( { - 1} \right)^{k} \frac{\sqrt \pi }{{2^{k + 1} k!}}H_{k}^{2} \left( 0 \right) + \left( { - 1} \right)^{k} \frac{\sqrt \pi }{{2^{k - 1} \left( {k - 1} \right)!}}H_{k - 1}^{2} \left( 0 \right) + \left( { - 1} \right)^{k} \frac{\sqrt \pi }{{2^{k - 2} \left( {k - 2} \right)!}}H_{k - 2}^{2} \left( 0 \right) + \hfill \\ + \left( { - 1} \right)^{k} \frac{\sqrt \pi }{{2^{k - 3} \left( {k - 3} \right)!}}H_{k - 3}^{2} \left( 0 \right) + 2J_{k - 4} - 2\int\limits_{ - \infty }^{ + \infty } {\tau^{2} e^{{ - \tau^{2} }} L_{k - 4}^{\prime } \left( {2\tau^{2} } \right)d\tau } . \hfill \\ \end{gathered}$$
(A.13)

The expression for \(J_{0}\) has the form

$$J_{0} = \int\limits_{ - \infty }^{ + \infty } {\tau^{2} e^{{ - \tau^{2} }} L_{0}^{{}} \left( {2\tau^{2} } \right)d\tau } = \frac{1}{{2\sqrt 2 \sigma_{v}^{3} }}\int\limits_{ - \infty }^{ + \infty } {v^{2} e^{{ - \frac{{v^{2} }}{{2\sigma_{v}^{2} }}}} dv} = \frac{{\sqrt {2\pi } }}{2\sqrt 2 } = \frac{\sqrt \pi }{2}.$$
(A.14)

Let us consider the even (\(k = 2m\)) and odd (\(k = 2m + 1\)) values for the expression \(J_{k}\) Proceeding with the iterative procedure expression (A.13) for \(J_{2m}\) takes the form:

$$J_{2m} = \frac{\sqrt \pi }{{2^{2m + 1} \left( {2m} \right)!}}H_{2m}^{2} \left( 0 \right) + \sqrt \pi \sum\limits_{s = 1}^{2m} {\frac{{H_{2m - s}^{2} \left( 0 \right)}}{{2^{2m - s} \left( {2m - s} \right)!}}} .$$
(A.15)

Similarly, for \(J_{2m + 1}\) we obtain

$$J_{2m + 1} = - \frac{\sqrt \pi }{{2^{2m + 2} \left( {2m + 1} \right)!}}H_{2m + 1}^{2} \left( 0 \right) - \sqrt \pi \sum\limits_{q = 1}^{2m + 1} {\frac{{H_{2m + 1 - q}^{2} \left( 0 \right)}}{{2^{2m + 1 - q} \left( {2m + 1 - q} \right)!}}} .$$
(A.16)

Comparing (A.15) and (A.16), we obtain a general expression for \(J_{k}\)

$$J_{k} = \left( { - 1} \right)^{k} \sqrt \pi \left\{ {\frac{1}{{2^{k + 1} k!}}H_{k}^{2} \left( 0 \right) + \sum\limits_{s = 1}^{k} {\frac{{H_{k - s}^{2} \left( 0 \right)}}{{2^{k - s} \left( {k - s} \right)!}}} } \right\}.$$
(A.17)

To transform expression (A.7), let us calculate the sum \(J_{k} + J_{k - 1}\) using (A.17)

$$J_{k} + J_{k - 1} = \left( { - 1} \right)^{k} \sqrt \pi \left\{ {\frac{{H_{k}^{2} \left( 0 \right) - 2kH_{k - 1}^{2} \left( 0 \right)}}{{2^{k + 1} k!}} + \sum\limits_{s = 1}^{k} {\frac{{H_{k - s}^{2} \left( 0 \right) - 2\left( {k - s} \right)H_{k - s - 1}^{2} \left( 0 \right)}}{{2^{k - s} \left( {k - s} \right)!}}} } \right\}.$$
(A.18)

Substituting (A.18) into (A.7), we get

$$\begin{gathered} \frac{{\left( { - 1} \right)^{n} }}{{2^{n + 1} n!}}H_{n}^{2} \left( {\frac{x}{{\sqrt 2 \sigma_{x} }}} \right) = \frac{1}{2}L_{n}^{{}} \left( {\frac{{x^{2} }}{{\sigma_{x}^{2} }}} \right) + \hfill \\ + \sum\limits_{k = 1}^{n} {\left( { - 1} \right)^{k} L_{n - k}^{{}} \left( {\frac{{x^{2} }}{{\sigma_{x}^{2} }}} \right)} \left\{ {\frac{{H_{k}^{2} \left( 0 \right) - 2kH_{k - 1}^{2} \left( 0 \right)}}{{2^{k + 1} k!}} + \sum\limits_{s = 1}^{k} {\frac{{H_{k - s}^{2} \left( 0 \right) - 2\left( {k - s} \right)H_{k - s - 1}^{2} \left( 0 \right)}}{{2^{k - s} \left( {k - s} \right)!}}} } \right\}. \hfill \\ \end{gathered}$$
(A.19)

Expression (A.19) can be rewritten in a compact form using the Heaviside function

$$\eta \left( s \right) = \left\{ \begin{gathered} 0,\,\,\,s = 0, \hfill \\ 1,\,\,\,s > 0. \hfill \\ \end{gathered} \right. \frac{1 + \eta \left( s \right)}{2} = \left\{ \begin{gathered} \frac{1}{2},\,\,\,s = 0, \hfill \\ 1,\,\,\,s > 0. \hfill \\ \end{gathered} \right.$$
(A.20)

Using (A.20), expression (A.19) takes the following form:

$$\frac{{\left( { - 1} \right)^{n} }}{{2^{n + 1} n!}}H_{n}^{2} \left( {\frac{x}{{\sqrt 2 \sigma_{x} }}} \right) = \sum\limits_{k = 0}^{n} {\overline{C}_{k} L_{n - k}^{{}} \left( {\frac{{x^{2} }}{{\sigma_{x}^{2} }}} \right)} ,$$
(A.21)

where

$$\overline{C}_{k} = \left( { - 1} \right)^{k} \sum\limits_{s = 0}^{k} {\frac{1 + \eta \left( s \right)}{2}\frac{{H_{k - s}^{2} \left( 0 \right) - 2\left( {k - s} \right)H_{k - s - 1}^{2} \left( 0 \right)}}{{2^{k - s} \left( {k - s} \right)!}}} .$$

Now let us consider expression (A.2). First of all, we calculate the expression \(\frac{{\partial^{2} S_{1} }}{{\partial x^{2} }}\) in (A.2)

$$\frac{{\partial^{2} S_{1} }}{{\partial x^{2} }} = - \frac{1}{{\sigma_{x}^{2} }}\left( {1 - \frac{{H^{\prime\prime}_{n} }}{{H_{n}^{{}} }} + \left( {\frac{{H^{\prime}_{n} }}{{H_{n}^{{}} }}} \right)^{2} } \right).$$
(A.22)

And find \(\left\langle {v^{2} } \right\rangle\)

$$\frac{{\left( { - 1} \right)^{n} \sqrt \pi }}{{2^{n + 1} n!\sigma_{v}^{2} }}H_{n}^{2} \left( {\frac{x}{{\sqrt 2 \sigma_{x} }}} \right)\left\langle {v^{2} } \right\rangle = \sum\limits_{k = 0}^{n} {L_{n - k}^{{}} \left( {\frac{{x^{2} }}{{\sigma_{x}^{2} }}} \right)} \,J_{k} - \sum\limits_{k = 0}^{n - 1} {L_{n - 1 - k}^{{}} \left( {\frac{{x^{2} }}{{\sigma_{x}^{2} }}} \right)} \,J_{k} ,$$
(A.23)

since \(\int\limits_{ - \infty }^{ + \infty } {v^{2} e^{{ - \frac{{v^{2} }}{{2\sigma_{v}^{2} }}}} L_{k}^{{}} \left( {\frac{{v^{2} }}{{\sigma_{v}^{2} }}} \right)dv = } 2\sqrt 2 \sigma_{v}^{3} J_{k}\) Substituting (A.17) into (A.23), we obtain

$$\frac{{\left( { - 1} \right)^{n} }}{{2^{n + 1} n!\sigma_{v}^{2} }}H_{n}^{2} \left( {\frac{x}{{\sqrt 2 \sigma_{x} }}} \right)\left\langle {v^{2} } \right\rangle = \sum\limits_{k = 0}^{n} {C_{k} L_{n - k}^{{}} \left( {\frac{{x^{2} }}{{\sigma_{x}^{2} }}} \right)} ,$$
(A.24)

where

$$C_{k} = \left( { - 1} \right)^{k} \sum\limits_{s = 0}^{k} {\frac{1 + \eta \left( s \right)}{2}\frac{{H_{k - s}^{2} \left( 0 \right) + 2\left( {k - s} \right)H_{k - s - 1}^{2} \left( 0 \right)}}{{2^{k - s} \left( {k - s} \right)!}}} .$$

Appendix B

Let us calculate

$$\begin{array}{l} {\left\langle {\left\langle {{v^2}} \right\rangle } \right\rangle _n} = \int\limits_{ - \infty }^{ + \infty } {{f_{1,n}}\left( x \right){{\left\langle {{v^2}} \right\rangle }_{v,n}}\left( x \right)dx} = \frac{{{\alpha ^2}}}{{\sigma _x^2}} - \frac{{{\alpha ^2}}}{{\sigma _x^2}}\int\limits_{ - \infty }^{ + \infty } {{f_{1,n}}\left( x \right)\frac{{{{H''}_n}}}{{H_n^{}}}dx} + \frac{{{\alpha ^2}}}{{\sigma _x^2}}\int\limits_{ - \infty }^{ + \infty } {{f_{1,n}}\left( x \right){{\left( {\frac{{{{H'}_n}}}{{H_n^{}}}} \right)}^2}dx} ,\\ {\left\langle {\left\langle {{v^2}} \right\rangle } \right\rangle _n} = \frac{{{\alpha ^2}}}{{\sigma _x^2}} - \frac{{{\alpha ^2}}}{{\sigma _x^2}}\frac{1}{{{2^n}n!}}\frac{{\sqrt 2 {\sigma _x}}}{{\sqrt {2\pi } \sigma _x^{}}}\int\limits_{ - \infty }^{ + \infty } {{e^{ - {y^2}}}H_n^{}\left( y \right){{H''}_n}\left( y \right)dy} + \\ + \frac{{{\alpha ^2}}}{{\sigma _x^2}}\frac{1}{{{2^n}n!}}\frac{{\sqrt 2 {\sigma _x}}}{{\sqrt {2\pi } \sigma _x^{}}}\int\limits_{ - \infty }^{ + \infty } {{e^{ - {y^2}}}{{H'}_n}\left( y \right){{H'}_n}\left( y \right)dy} , \end{array}$$

and taking into account the differentiation formula for the Hermite polynomials \(H_{n}^{\prime } \left( y \right) = 2nH_{n - 1} \left( y \right)\) and the orthogonality condition, we obtain the following expression:

$$\left\langle {\left\langle {v^{2} } \right\rangle } \right\rangle_{n} = \frac{{\alpha^{2} }}{{\sigma_{x}^{2} }} + \frac{{\alpha^{2} }}{{\sigma_{x}^{2} }}\frac{1}{{2^{n} n!}}\frac{{4n^{2} }}{\sqrt \pi }\sqrt \pi 2^{n - 1} \left( {n - 1} \right)! = \frac{{\alpha^{2} }}{{\sigma_{x}^{2} }}\left( {2n + 1} \right),$$
$$\left\langle {\left\langle {v^{2} } \right\rangle } \right\rangle_{n} = \sigma_{v}^{2} \left( {2n + 1} \right),$$
(B.1)

where relation (1.4) is taken into account. By virtue of the symmetry of expressions (1.6) and (1.8), we can rewrite the expression \(\left\langle {\left\langle {x^{2} } \right\rangle } \right\rangle_{n}\) in a similar way

$$\left\langle {\left\langle {x^{2} } \right\rangle } \right\rangle_{n} = \sigma_{x}^{2} \left( {2n + 1} \right).$$
(B.2)

Appendix C

Let us derive the quantum potential (6) for the function \(f_{1,n}\) (1.5):

$$\sqrt {f_{1,n} } = \sqrt {c_{n} } e^{{ - \frac{{y^{2} }}{2}}} H_{n} \left( y \right){\text{sgn}} H_{n} ,$$
(C.1)
$$\left( {\sqrt {f_{1,n} } } \right)_{xx} = \frac{{\sqrt {c_{n} } }}{{\sigma^{2} }}e^{{ - \frac{{y^{2} }}{2}}} {\text{sgn}} H_{n} \left[ {2n\left( {n - 1} \right)H_{n - 2} - 2nyH_{n - 1} + \frac{{y^{2} - 1}}{2}H_{n} } \right],$$
(C.2)

where \(c_{n}^{ - 1} = 2^{n} n!\sqrt {2\pi } \sigma_{x}\), \(y = \frac{x}{{\sqrt 2 \sigma_{x}^{{}} }}\), \(H_{n}^{\prime } = 2nH_{n - 1}\) Taking recurrent relationship \(H_{n} - 2yH_{n - 1} + 2\left( {n - 1} \right)H_{n - 2} = 0\) into account, expression (C.2) will take the following form:

$$\left( {\sqrt {f_{1,n} } } \right)_{xx} = \frac{{\sqrt {c_{n} } }}{{2\sigma^{2} }}e^{{ - \frac{{y^{2} }}{2}}} H_{n} {\text{sgn}} H_{n} \left[ {y^{2} - \left( {2n + 1} \right)} \right].$$
(C.3)

Substituting (C.1) and (C.3) into (6), we get

$${\text{Q}}_{n} \left( x \right) = - \frac{{\hbar^{2} }}{2m}\frac{{\left( {\sqrt {f_{1,n} } } \right)_{xx} }}{{\sqrt {f_{1,n} } }} = - \frac{{\hbar^{2} }}{{4m\sigma_{x}^{2} }}\left[ {y^{2} - \left( {2n + 1} \right)} \right] = - \frac{{m\omega^{2} x^{2} }}{2} + \hbar \omega \left( {n + \frac{1}{2}} \right),$$
(C.4)

where relations (1.4) are taken into account.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perepelkin, E.E., Sadovnikov, B.I., Inozemtseva, N.G. et al. The Wigner function negative value domains and energy function poles of the harmonic oscillator. J Comput Electron 20, 2148–2158 (2021). https://doi.org/10.1007/s10825-021-01747-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01747-y

Keywords

Navigation