Skip to main content
Log in

The effect of edge functionalization on the device performance of monolayer Si0.5Ge0.5 nanoribbon transistors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Monolayer silicene and germanene have received intensive attention due to their good compatibility with current Si-based electronics. However, the lack of a bandgap severely limits their applications in complex electronic circuits. To overcome this obstacle, we build Si1−xGex superlattices (SLs) and further cleave them into nanoribbons to tune the electrical properties of silicene and germanene, and analyze their transport behavior by means of density functional theory combined with the nonequilibrium Green’s function formalism. Among all the designed Si1−xGex SLs, Si0.5Ge0.5 possesses the widest bandgap of 0.53 eV, as its larger amount of Ge–Si bonds can result in strong absorption of light towards short wavelengths. By edge functionalization with Li, H, and F atoms, the conduction type of the monolayer Si0.5Ge0.5 nanoribbons can be rationally tuned from n-type to ambipolar to p-type. These tunable electronic properties can be attributed to the internal and interfacial charge transfer. The simulated transport behavior of field-effect transistors based on monolayer Si0.5Ge0.5 nanoribbons demonstrates that such edge functionalization could be applied to modulate the conductivity, conduction type, on/off ratio, and carrier concentration effectively. The results of this work reveal the great potential of edge functionalization for tuning the electrical properties of two-dimensional (2D) semiconductors.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hou, J.F., Ke, C.M., Chen, J.J., Sun, B.F., Xia, Y.Z., Li, X., Chen, T., Wu, Y.P., Wu, Z.M., Kang, J.Y.: Reduced turn-on voltage and boosted mobility in monolayer WS2 transistors by mild Ar+ plasma treatment. ACS Appl. Mater. Interfaces 12(17), 19635–19642 (2020)

    Google Scholar 

  2. Wang, L., Yue, Q.Y., Pei, C.J., Fan, H.C., Dai, J., Huang, X., Li, H., Huang, W.: Scrolling bilayer WS2/MoS2 heterostructures for high-performance photo-detection. Nano Res. 13(4), 959–966 (2020)

    Google Scholar 

  3. Wang, J.Y., Verzhbitskiy, I., Eda, G.: Electroluminescent devices based on 2D semiconducting transition metal dichalcogenides. Adv. Mater. 30(47), 1802687 (2018)

    Google Scholar 

  4. Zhou, W.H., Chen, J.Y., Bai, P.X., Guo, S.Y., Zhang, S.L., Song, X.F., Tao, L., Zeng, H.B.: Two-dimensional pnictogen for field-effect transistors. Research 2019, 1046329 (2019)

    Google Scholar 

  5. Zhang, S.L., Yan, Z., Li, Y.F., Chen, Z.F., Zeng, H.B.: Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem. Int. Ed. 54(10), 3112–3115 (2015)

    Google Scholar 

  6. Dávila, M.E., Xian, L., Cahangirov, S., Rubio, A., Lay, G.L.: Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16(9), 095002 (2014)

    Google Scholar 

  7. Elisabeth, B., Sheneve, B., Shishi, J., Restrepo, O.D., Wolfgang, W., Goldberger, J.E.: Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7(5), 4414–4421 (2013)

    Google Scholar 

  8. Molle, A., Grazianetti, C., Tao, L., Taneja, D., Alam, M.H., Akinwande, D.: Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev. 47(16), 6370–6387 (2018)

    Google Scholar 

  9. Shi, Z., Zhang, Z., Kutana, A., Bi, Y.: Predicting two-dimensional silicon carbide monolayers. ACS Nano 9(10), 9802–9809 (2015)

    Google Scholar 

  10. Lan, C., Cheng-Cheng, L., Baojie, F., Xiaoyue, H., Peng, C., Zijing, D., Sheng, M., Yugui, Y., Kehui, W.: Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett. 109(5), 056804 (2012)

    Google Scholar 

  11. Roome, N.J., Carey, J.D.: Beyond graphene: stable elemental monolayers of silicene and germanene. ACS Appl. Mater. Interfaces 6(10), 7743–7750 (2014)

    Google Scholar 

  12. Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012)

    Google Scholar 

  13. Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., Zhang, Y., Li, G., Zhou, H., Hofer, W.A., Gao, H.-J.: Buckled silicene formation on Ir(111). Nano Lett. 13(2), 685–690 (2013)

    Google Scholar 

  14. Antoine, F., Rainer, F., Taisuke, O., Hiroyuki, K., Ying, W., Yukiko, Y.T.: Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108(24), 245501 (2012)

    Google Scholar 

  15. Derivaz, M., Dentel, D., Stephan, R., Hanf, M.C., Mehdaoui, A., Sonnet, P., Pirri, C.: Continuous germanene layer on Al(111). Nano Lett. 15(4), 2510–2516 (2015)

    Google Scholar 

  16. Li, L., Lu, S.Z., Pan, J., Qin, Z., Wang, Y.Q., Wang, Y., Cao, G.Y., Du, S., Gao, H.J.: Buckled germanene formation on Pt(111). Adv. Mater. 26(28), 4820–4824 (2014)

    Google Scholar 

  17. Chiappe, D., Scalise, E., Cinquanta, E., Grazianetti, C., van den Broek, B., Fanciulli, M., Houssa, M., Molle, A.: Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 26(13), 2096–2101 (2014)

    Google Scholar 

  18. Pan, L., Liu, H.J., Wen, Y.W., Tan, X.J., Lv, H.Y., Shi, J., Tang, X.F.: First-principles study of monolayer and bilayer honeycomb structures of group-IV elements and their binary compounds. Phys. Lett. A 375(3), 614–619 (2011)

    Google Scholar 

  19. Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z., Yu, D., Lu, J.: Tunable bandgap in silicene and germanene. Nano Lett. 12(1), 113–118 (2011)

    Google Scholar 

  20. Mohan, B., Kumar, A., Ahluwalia, P.K.: Electronic and optical properties of silicene under uni-axial and bi-axial mechanical strains: a first principle study. Physica E 61(61), 40–47 (2014)

    Google Scholar 

  21. Kaloni, T.P., Schreckenbach, G., Freund, M.S.: Large enhancement and tunable band gap in silicene by small organic molecule adsorption. J. Phys. Chem. C 118(40), 23361–23367 (2014)

    Google Scholar 

  22. Meng, Y., Quhe, R., Zheng, J., Ni, Z., Wang, Y., Yuan, Y., Tse, G., Shi, J., Gao, Z., Jing, L.: Tunable band gap in germanene by surface adsorption. Physica E 59(3), 60–65 (2014)

    Google Scholar 

  23. van den Broek, B., Houssa, M., Scalise, E., Pourtois, G., Afanas'ev, V.V., Stesmans, A.: First-principles electronic functionalization of silicene and germanene by adatom chemisorption. Appl. Surf. Sci. 291(4), 104–108 (2014)

    Google Scholar 

  24. Liu, B., Kopf, M., Abbas, A.N., Wang, X., Guo, Q., Jia, Y., Xia, F., Weihrich, R., Bachhuber, F., Pielnhofer, F.: Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27(30), 4423–4429 (2015)

    Google Scholar 

  25. Zhou, W.H., Zhang, S.L., Wang, Y.Y., Guo, S.Y., Qu, H.Z., Bai, P.X., Li, Z., Zeng, H.B.: Anisotropic in-plane ballistic transport in monolayer black arsenic-phosphorus FETs. Adv. Electron. Mater. 6(3), 044066 (2020)

    Google Scholar 

  26. Zhou, W.H., Zhang, S.L., Guo, S.Y., Wang, Y.Y., Lu, J., Ming, X., Li, Z., Qu, H.Z., Zeng, H.B.: Designing sub-10-nm metal-oxide-semiconductor field-effect transistors via ballistic transport and disparate effective mass: the case of two-dimensional BiN. Phys. Rev. Appl. 13(4), 044066 (2020)

    Google Scholar 

  27. Zheng, J., Chi, F., Guo, Y.: Enhanced spin Seebeck effect in a germanene p–n junction. J. Appl. Phys. 116(24), 243907 (2014)

    Google Scholar 

  28. Yamakage, A., Ezawa, M., Tanaka, Y., Nagaosa, N.: Charge transport in pn and npn junctions of silicene. Phys. Rev. B 88(8), 085322 (2013)

    Google Scholar 

  29. Wang, X., Liu, G., Liu, R.F., Luo, W.W., Wu, M.S., Sun, B.Z., Lei, X.L., Ouyang, C.Y., Xu, B.: Strain-tunable molecular doping in germanane: a first-principles study. Nanotechnology 29(46), 465202 (2018)

    Google Scholar 

  30. He, Y.Y., Xia, F.F., Shao, Z.B., Zhao, J.W., Jie, J.S.: Surface charge transfer doping of monolayer phosphorene via molecular adsorption. J. Phys. Chem. Lett. 6(23), 4701–4710 (2015)

    Google Scholar 

  31. Lv, Y.W., Qin, W.J., Huang, Q.J., Chang, S., Wang, H., He, J.: Graphene nanoribbon tunnel field-effect transistor via segmented edge saturation. IEEE Trans. Electron Devices 64(6), 2694–2701 (2017)

    Google Scholar 

  32. Dai, X.Y., Zhang, L.S., Jiang, Y.Y., Li, H.: Tuning electronic properties of boron phosphide nanoribbons by edge passivation and deformation. Phys. Chem. Chem. Phys. 21(28), 15392–15399 (2019)

    Google Scholar 

  33. Zhao, X., Zhang, H., Zhao, B.R., Gao, Y.H., Wang, H.Y., Wang, T.X., Wei, S.Y., Yang, L.: Engineering the band gap of armchair MoSe2 nanoribbon with edge passivation. Superlattices Microstruct. 124, 62–71 (2018)

    Google Scholar 

  34. Feng, X.W., Wang, L., Huang, X., Chen, L., Ang, K.W.: Complementary black phosphorus nanoribbons field-effect transistors and circuits. IEEE Trans. Electron Devices 65(10), 4122–4128 (2018)

    Google Scholar 

  35. Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., Stokbro, K.: Density functional method for nonequilibrium electron transport. Phys. Rev. B 65(16), 165401 (2001)

    Google Scholar 

  36. He, Y.Y., Xiong, S.Y., Xia, F.F., Shao, Z.B., Zhao, J.W., Zhang, X.J., Jie, J.S., Zhang, X.H.: Tuning the electronic transport anisotropy in a-phase phosphorene through superlattice design. Phys. Rev. B 97(8), 10 (2018)

    Google Scholar 

  37. Schlipf, M., Gygi, F.: Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015)

    MATH  Google Scholar 

  38. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976)

    MathSciNet  Google Scholar 

  39. Ferreira, L.G., Marques, M., Teles, L.K.: Approximation to density functional theory for the calculation of band gaps of semiconductors. Phys. Rev. B 78(12), 125116 (2008)

    Google Scholar 

  40. Bruque, N.A., Pandey, R.R., Lake, R.K.: Electron transport through a conjugated molecule with carbon nanotube leads. Phys. Rev. B 76(20), 205322 (2007)

    Google Scholar 

  41. Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 8861–8869 (1991)

    Google Scholar 

  42. Petersson, G.A., Tensfeldt, T.G., Montgomery, J.A.: A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J. Chem. Phys. 94(9), 6091–6101 (1991)

    Google Scholar 

  43. Datta, S.: Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  44. Yan, J.A., Gao, S.P., Stein, R., Coard, G.: Tuning the electronic structures of silicene and germanene by biaxial strain and electric field. Phys. Rev. B 91(24), 245403 (2015)

    Google Scholar 

  45. Park, J., Kim, M.S., Park, B., Oh, S.H., Roy, S., Kim, J., Choi, W.: Composition-tunable synthesis of large-scale Mo1xWxS2 alloys with enhanced photoluminescence. ACS Nano 12(6), 6301–6309 (2018)

    Google Scholar 

  46. Feng, Q., Mao, N., Wu, J., Xu, H., Wang, C., Zhang, J., Xie, L.: Growth of MoS2(1–x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9(7), 7450–7455 (2015)

    Google Scholar 

  47. Kumar, P., Skomski, R., Manchanda, P., Kashyap, A., Dowben, P.A.: Effective mass and band gap of strained graphene. Curr. Appl. Phys. 14, S136–S139 (2014)

    Google Scholar 

  48. Xia, F.F., Xiong, S.Y., He, Y.Y., Shao, Z.B., Zhang, X.J., Jie, J.S.: Tuning the electronic and optical properties of monolayers As, Sb, and Bi via surface charge transfer doping. J. Phys. Chem. C 121(35), 19530–19537 (2017)

    Google Scholar 

  49. Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., Bechstedt, F.: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 20(4), 045112 (2006)

    Google Scholar 

  50. Ambrosch-Draxl, C., Sofo, J.O.: Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175(1), 1–14 (2004)

    Google Scholar 

  51. Zhang, Q., Feng, Y.J., Chen, X.Y., Zhang, W.W., Wu, X.Y., Wu, L., Wang, Y.X.: Structural and electronic anisotropy, negative Poisson’s ratio, strain-sensitive Dirac-like cone in monolayer a-CSe: tailoring electronic properties. Comput. Mater. Sci. 168, 87–95 (2019)

    Google Scholar 

  52. Su, H.P., Qin, X.F., Shao, Z.G.: Electronic transport properties of boron and nitrogen pair co-doped 6,6,12-graphyne nanosheet from first principles. Phys. Scr. 94(7), 075801 (2019)

    Google Scholar 

  53. Kou, L., Frauenheim, T., Chen, C.: Phosphorene as a superior gas sensor: Selective adsorption and distinct I-V response. J. Phys. Chem. Lett. 5(15), 2675–2681 (2014)

    Google Scholar 

  54. Nakamura, K., Miyazu, J., Sasaki, Y., Imai, T., Sasaura, M., Fujiura, K.: Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction. J. Appl. Phys. 104(1), 013105 (2008)

    Google Scholar 

  55. Ong, Z.Y., Zhang, G., Zhang, Y.W.: Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene. J. Appl. Phys. 116(21), 214505 (2014)

    Google Scholar 

  56. Tian, Z., Guo, C.L., Zhao, M.X., Li, R.R., Xue, J.M.: Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 11(2), 2219–2226 (2017)

    Google Scholar 

  57. Yang, S.X., Liu, Y., Wu, M.H., Zhao, L.D., Lin, Z.Y., Cheng, H.C., Wang, Y.L., Jiang, C.B., Wei, S.H., Huang, L., Huang, Y., Duan, X.F.: Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 11(1), 554–564 (2018)

    Google Scholar 

  58. Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68(16), 2512 (1992)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 51802121, and 51861145202), the Zhejiang Provincial Natural Science Foundation of China (grant nos. LY19B030006, and LQ20B030012), and the Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Zhejiang Province, Jiaxing University (MTC2020-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 675 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Cheng, N., Xia, F. et al. The effect of edge functionalization on the device performance of monolayer Si0.5Ge0.5 nanoribbon transistors. J Comput Electron 20, 95–106 (2021). https://doi.org/10.1007/s10825-020-01539-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01539-w

Keywords

Navigation