Skip to main content
Log in

A review on the compact modeling of parasitic capacitance: from basic to advanced FETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents a review on the development of parasitic-capacitance modeling for metal–oxide–semiconductor field-effect transistors (MOSFETs), covering models developed for the simple parallel-plate capacitance and the nonplanar and coplanar plate capacitances required for the intrinsic and extrinsic part of such devices. A comparative study of various extrinsic capacitance models with respect to a reference model is used to analyze the benefits of the various approaches. Capacitance models for basic MOSFETs and advance multigate FETs with two-dimensional (2D) and three-dimensional (3D) structures are reviewed. It is found that the elliptical field lines between the gate electrodes and source/drain region are modeled very well, while deviations of \(\pm 2 \%\) in the orthogonal plate capacitance are observed when the gate electrode thickness is varied from 5 to 20 nm .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Parvais, B., Dehan, M., Subramanian, V., Mercha, A., Tamer San, K., Jurczak, M.: Analysis of the FinFET parasitics for improved RF performances. In: Proceedings of IEEE International SOI Conference, Indian Wells, CA, USA, pp. 37–38 (2007)

  2. Tinoco, J.C., Salas, S., Martinez-Lopez, A.G., Alvarado, J., Raskin, J.P.: Impact of extrinsic capacitances on FinFET RF performance. IEEE Trans. Microw. Theory Tech. 61(2), 833–840 (2013)

    Article  Google Scholar 

  3. Subramanian, V., Mercha, A., Parvais, B., Dehan, M., Groeseneken, G., Sansen, W., Decoutere, S.: Identifying the bottlenecks to the RF performance of FinFETs. In: Proceedings of 23rd International Conference on VLSI Design, pp. 111–116. India, Jan, Bangalore (2010)

  4. Hashemi, S.A., Beigi, K., Jit, S.: Modeling of fringing capacitances of ion-implanted double-gate junctionless FETs using conformal mapping. IEEE Trans. Electron Devices 66, 4126–4133 (2019)

    Article  Google Scholar 

  5. Sharma, Savitesh Madhulika, Dasgupta, S., Kartikeyan, M.V.: Successive conformal mapping technique to extract inner fringe capacitance of Underlap DG-FinFET and its variations with geometrical parameters. IEEE Trans. Electron Devices 64(2), 258–265 (2017)

    Article  Google Scholar 

  6. Wu, W., Chan, M.: Analysis of geometry-dependent parasitics in multifin double gate FinFETs. IEEE Trans. Electron Devices 54(4), 692–698 (2007)

    Article  Google Scholar 

  7. Reuhli, A.E., Brennan, P.A.: Capacitance models for integrated circuit metallization wires. IEEE Solid State Circuits Soc. SC–10, 530–536 (1975)

    Article  Google Scholar 

  8. Kamchouchi, H., Zaky, A.: A direct method for the edge capacitance of thick electrodes. J. Phys. D Appl. Phys. 8(12), 1365–1371 (1975)

    Article  Google Scholar 

  9. Elsmary, M.I.: Capacitance calculations in MOSFET VLSI. IEEE Electron Devices Lett. EDL–3(1), 6–7 (1982)

    Google Scholar 

  10. Sakurai, T., Tamaru, K.: Simple formulas for to dimensional capacitances. IEEE Trans. Electron Devices ED–30, 183–185 (1983)

    Article  Google Scholar 

  11. Shrivastava, R., Fitzpatrick, K.: A simple model for the overlap capacitance of VLSI MOS devices. IEEE Trans. Electron Devices ED–29(12), 1870–1875 (1982)

    Article  Google Scholar 

  12. Greeneich, E.W.: An analytical method for the gate capacitance of small geometry MOS structures. IEEE Trans. Electron Devices ED–30(12), 1838–1839 (1983)

    Article  Google Scholar 

  13. Suzuki, K.: Parasitic capacitance of submicrometer MOSFET’s. IEEE Trans. Electron Devices 46(9), 1895–1900 (1999)

    Article  Google Scholar 

  14. Liu, W.: MOSFET Models for SPICE Simulation Including BSIM3v3 and BSIM4. Wiley, New York (2001)

    Book  Google Scholar 

  15. Hiblot, G., Rafhay, Q., Boeuf, F.: Refined conformal mapping model for MOSFET parasitic capacitances based on elliptic integrals. IEEE Trans. Electron Devices 62(3), 972–979 (2015)

    Article  Google Scholar 

  16. Mohapatra, N.R., Desai, M.P., Narendra, S.G., Rao, V.R.: Modeling of parasitic capacitances in deep submicrometer conventional and high-K dielectric MOS transistors. IEEE Trans. Electron Devices 50(4), 959–966 (2003)

    Article  Google Scholar 

  17. Bansal, A., Paul, B.C., Roy, K.: Modeling and optimization of fringe capacitance of nanoscale DGMOS devices. IEEE Trans. Electron Devices 52(2), 256–262 (2005)

    Article  Google Scholar 

  18. Bansal, A., Paul, B.C., Roy, K.: An analytical fringe capacitance model for interconnects using conformal mapping. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(12), 2765–2774 (2006)

    Article  Google Scholar 

  19. Plonsey, R., Collins, R.E.: Principles and Applications of Electromagnetic Fields. McGraw-Hill, New York (1961)

    Google Scholar 

  20. Xiong, S., King, T., Bokor, J.: Study of the extrinsic parasitics in nano-scale transistors. Semicond. Sci. Technol. 20, 652–657 (2005)

    Article  Google Scholar 

  21. Roy, A., Enz, C.C., Sallese, J.M.: Compact modeling of gate sidewall capacitance of DG-MOSFET. IEEE Trans. Electron Devices 53(10), 2655–2657 (2006)

    Article  Google Scholar 

  22. Ji, F., Xua, J.P., Lai, P.T., Guand, J.G.: A fringing-capacitance model for deep-submicron MOSFET with high-k gate dielectric. Microelectron. Reliab. 48(5), 693–697 (2008)

    Article  Google Scholar 

  23. Ghione, G., Naldi, C.U.: Coplanar waveguides for MMIC applications: effects of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling. IEEE Trans. Microw. Theory Tech. 35(3), 260–267 (1987)

    Article  Google Scholar 

  24. Liu, X., Jin, X., Lee, J.: A compact model of fringing field induced parasitic capacitance for deep sub-micrometer MOSFETs. Solid State Electron. 53(9), 1041–1045 (2009)

    Article  Google Scholar 

  25. Lacord, J., Boeuf, F.: Comprehensive and accurate parasitic capacitance models for two- and three dimensional CMOS device structures. IEEE Trans. Electron Devices 59(5), 1332–1344 (2012)

    Article  Google Scholar 

  26. Lee, K., An, T., Joo, S., Kwon, K., Kim, S.: Modeling of parasitic fringing capacitance in multifin trigate FinFETs. IEEE Trans. Electron Devices 60(5), 1786–1789 (2013)

    Article  Google Scholar 

  27. Anderson, J.D.: Fundamentals of Aerodynamics, 2nd edn, p. 719. McGraw Hill, New York (1991)

    Google Scholar 

  28. Rodriguez, S.S., Tinoco, J.C., Martinez-Lopez, A.G., Alvarado, J., Raskin, J.P.: Parasitic gate capacitance model for triple-gate FinFETs. IEEE Trans. Electron Devices 60(11), 3710–3717 (2013)

    Article  Google Scholar 

  29. An, T., Choe, K., Kwon, K., Kim, S.: Performance optimization study of FinFETs considering parasitic capacitance and resistance. J. Semicond. Technol. Sci. 14(5), 525–536 (2014)

    Article  Google Scholar 

  30. Kim, S.H., Fossum, J.G., Yang, J.W.: Modeling and significance of fringe capacitance in non-classical CMOS devices with gate-source/drain underlap. IEEE Trans. Electron Devices 53(9), 2143–2149 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Electronics and Communication Engineering, IIT Roorkee, for their valuable support in carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savitesh Madhulika Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.M., Singh, A., Dasgupta, S. et al. A review on the compact modeling of parasitic capacitance: from basic to advanced FETs. J Comput Electron 19, 1116–1125 (2020). https://doi.org/10.1007/s10825-020-01515-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01515-4

Keywords

Navigation