Skip to main content
Log in

Modifying quantum Grover’s algorithm for dynamic multi-pattern search on reconfigurable hardware

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Grover’s quantum search algorithm is a highly studied quantum algorithm that has potential applications in unstructured data search, achieving quadratic speedup over existing classical search algorithms. In this work, we propose a modified quantum circuit for multi-pattern quantum Grover’s search algorithm. Our proposed modification simplifies the conventional Grover’s algorithm circuit and makes it capable of processing dynamically changing input patterns. The proposed techniques are demonstrated using reconfigurable hardware architectures that are designed for cost-effective, scalable, high-precision and high-throughput emulation of quantum algorithms. We experimentally evaluate the modified algorithm using Field Programmable Gate Array (FPGA) hardware and provide analysis of experimental results in terms of hardware resource utilization and emulation time. Our results demonstrate successful emulation of multi-pattern Grover’s algorithm using up to 22 quantum bits on a single FPGA, which is the highest and most efficient among existing work. Hardware implementations were performed for up to 32 qubits, and emulation time results of up to 32 qubits were projected using a performance estimation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Deutsch, D., Penrose, R.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. Preprint arXiv:quant-ph/9605043 (1996)

  4. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-quantum Cryptography, 1st edn. Springer, Berlin (2009)

    Book  Google Scholar 

  5. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  Google Scholar 

  6. Williams, C.P.: Explorations in Quantum Computing, 2nd edn. Springer, Berlin (2011)

    Book  Google Scholar 

  7. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  8. Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., Neven, H.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14(6), 595 (2018)

    Article  Google Scholar 

  9. The D-Wave 2000Q Quantum Computer Technology Overview. https://www.dwavesys.com/sites/default/files/D-Wave%202000Q%20Tech%20Collateral_0117F.pdf. Last Accessed: March 2020

  10. IBMQ: IBM Q Experience. https://quantumexperience.ng.bluemix.net/qx/devices. Last Accessed: March 2020

  11. Google: Google AI Blog. https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html. Last Accessed: March 2020

  12. Rigetti: Rigetti Computing. https://rigetti.com/. Last Accessed: March 2020

  13. Wang, B.: IonQ has the most powerful quantum computers with 79 trapped ion qubits and 160 stored qubits. https://www.nextbigfuture.com/2018/12/ionq-has-the-most-powerful-quantum-computers-with-79-trapped-ion-qubits-and-160-stored-qubits.html. Last Accessed: March 2020

  14. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  15. Zalka, C.: Using Grover’s quantum algorithm for searching actual databases. Phys. Rev. A 62(5), 052305 (2000)

    Article  MathSciNet  Google Scholar 

  16. Bernstein, D.J.: Grover vs. McEliece. In: International Workshop on Post-quantum Cryptography, pp. 73–80. Springer, Berlin (2010)

  17. Cheng, S.-T., Tao, M.-H.: Quantum cooperative search algorithm for 3-sat. J. Comput. Syst. Sci. 73(1), 123–136 (2007)

    Article  MathSciNet  Google Scholar 

  18. Bang, J., Ryu, J., Lee, C., Yoo, S., Lim, J., Lee, J.: A quantum heuristic algorithm for the traveling salesman problem. J. Korean Phys. Soc. 61(12), 1944–1949 (2012)

    Article  Google Scholar 

  19. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. ACM Sigact News 28(2), 14–19 (1997)

    Article  Google Scholar 

  20. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Is quantum search practical? Comput. Sci. Eng. 7(3), 62–70 (2005)

    Article  Google Scholar 

  21. Mandviwalla, A., Ohshiro, K., Ji, B.: Implementing Grover’s algorithm on the IBM quantum computers. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 2531–2537. IEEE, New York (2018)

  22. Brickman, K.-A., Haljan, P.C., Lee, P.J., Acton, M., Deslauriers, L., Monroe, C.: Implementation of Grover’s quantum search algorithm in a scalable system. Phys. Rev. A 72(5), 050306 (2005)

    Article  Google Scholar 

  23. Das, R., Mahesh, T.S., Kumar, A.: Experimental implementation of Grover’s search algorithm using efficient quantum state tomography. Chem. Phys. Lett. 369(1–2), 8–15 (2003)

    Article  Google Scholar 

  24. Zhou, R., Ding, Q.: Quantum pattern recognition with probability of 100%. Int. J. Theor. Phys. 47(5), 1278–1285 (2008)

    Article  Google Scholar 

  25. DirectStream: DirectStream. https://directstream.com. Last Accessed: March 2020

  26. Harbaum, T., Seboui, M., Balzer, M., Becker, J., Weber, M.: A content adapted FPGA memory architecture with pattern recognition capability for L1 track triggering in the LHC environment. In: 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 184–191. IEEE, New York (2016)

  27. Zwiebac, B.: Dirac’s Bra and Ket notation, October 2013. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture-notes/MIT8_05F13_Chap_04.pdf. Last Accessed: March 2020

  28. Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003)

    Article  MathSciNet  Google Scholar 

  29. Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  30. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortsch. Phys. Prog. Phys. 46(4–5), 493–505 (1998)

    Article  Google Scholar 

  31. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)

    Article  Google Scholar 

  32. Hsu, J.: How much power will quantum computing need? October 2015. https://spectrum.ieee.org/tech-talk/computing/hardware/how-much-power-will-quantum-computing-need. Last Accessed: March 2020

  33. Quantiki: Quantiki (2019). https://quantiki.org/wiki/list-qc-simulators. Last Accessed: March 2020

  34. Avila, A., Reiser, R.H.S., Yamin, A.C., Pilla, M.L.: Parallel simulation of Shor’s and Grover’s algorithms in the distributed geometric machine. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 412–419. IEEE, New York (2017)

  35. Gutiérrez, E., Romero, S., Trenas, M.A., Zapata, E.L.: Quantum computer simulation using the cuda programming model. Comput. Phys. Commun. 181(2), 283–300 (2010)

    Article  MathSciNet  Google Scholar 

  36. Chen, J., Zhang, F., Huang, C., Newman, M., Shi, Y.: Classical simulation of intermediate-size quantum circuits. Preprint arXiv:1805.01450 (2018)

  37. Villalonga, B., Lyakh, D., Boixo, S., Neven, H., Humble, T.S., Biswas, R., Rieffel, E.G., Ho, A., Mandrà, S.: Establishing the quantum supremacy frontier with a 281 pflop/s simulation. Preprint arXiv:1905.00444 (2019)

  38. De Raedt, H., Jin, F., Willsch, D., Willsch, M., Yoshioka, N., Ito, N., Yuan, S., Michielsen, K.: Massively parallel quantum computer simulator, eleven years later. Comput. Phys. Commun. 237, 47–61 (2019)

    Article  Google Scholar 

  39. Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L., Magerlein, T., Solomonik, E., Draeger, E.W., Holland, E.T., Wisnieff, R.: Breaking the 49-qubit barrier in the simulation of quantum circuits. Preprint arXiv:1710.05867 (2017)

  40. Lee, Y.H., Khalil-Hani, M., Marsono, M.N.: An FPGA-based quantum computing emulation framework based on serial-parallel architecture. Int. J. Reconfig. Comput. 2016, 18 (2016)

    Article  Google Scholar 

  41. Suchara, M., Alexeev, Y., Chong, F., Finkel, H., Hoffmann, H., Larson, J., Osborn, J., Smith, G.: Hybrid quantum-classical computing architectures. In: Proceedings of the 3rd International Workshop on Post-Moore Era Supercomputing, 2018 (2018)

  42. Pilch, J., Długopolski, J.: An FPGA-based real quantum computer emulator. J. Comput. Electron. 18(1), 329–342 (2019)

    Article  Google Scholar 

  43. Frank, M.P., Oniciuc, L., Meyer-Baese, U.H., Chiorescu, I.: A space-efficient quantum computer simulator suitable for high-speed FPGA implementation. In: Quantum Information and Computation VII, Volume 7342, pp. 734203. International Society for Optics and Photonics (2009)

  44. Khalid, A.U., Zilic, Z., Radecka, K.: FPGA emulation of quantum circuits. In: IEEE International Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings, pp. 310–315. IEEE, New York (2004)

  45. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. Preprint arXiv:1411.4028 (2014)

  46. El-Araby, E., Merchant, S.G., El-Ghazawi, T.: Assessing productivity of high-level design methodologies for high-performance reconfigurable computers. In: High-Performance Computing using FPGAs, pp. 719–745. Springer, Berlin (2013)

  47. Mahmud, N., El-Araby, E.: Towards higher scalability of quantum hardware emulation using efficient resource scheduling. In: 2018 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–10. IEEE, New York (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Kuhnke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, N., Haase-Divine, B., MacGillivray, A. et al. Modifying quantum Grover’s algorithm for dynamic multi-pattern search on reconfigurable hardware. J Comput Electron 19, 1215–1231 (2020). https://doi.org/10.1007/s10825-020-01489-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01489-3

Keywords

Navigation