Skip to main content
Log in

Experimental demonstration of deterministic quantum search algorithms on a programmable silicon photonic chip

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The Grover quantum search algorithm is a landmark quantum computing application, which has a speed advantage over classical algorithms for searching an unsorted database. For an unsorted database of N items, the classical algorithm needs to search O(N) times, while the Grover algorithm only needs \(O(\sqrt N)\) times. However, except for the special case of N = 4, the traditional Grover algorithm always has some probability of failure. To solve this problem, several schemes for deterministically performing quantum search have been proposed, but they all impose additional requirements on the query Oracle and cannot be implemented in many practical scenarios. Recently, Roy et al. [Phys. Rev. Res. 4, L022013 (2022)] proposed a new deterministic quantum search scheme with no additional requirements on the query Oracle, which has the potential to perfectly replace the traditional Grover algorithm. In this study, we experimentally implement on a programmable silicon quantum photonic chip four deterministic quantum search algorithms, including the Roy algorithm, all of which obtained an average search success rate of over 0.93, exceeding the theoretical maximum of 0.9074 that the traditional Grover algorithm can achieve. Our results demonstrate the feasibility and superiority of the deterministic quantum search algorithms and are expected to facilitate the wider application of these algorithms in future quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Shor, in Algorithms for quantum computation: Discrete logarithms and factoring: Proceedings 35th Annual Symposium on Foundations of Computer Science (IEEE, 1994), pp. 124–134.

  2. L. K. Grover, in A fast quantum mechanical algorithm for database search: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing (ACM, New York, 1996), pp. 212–219.

    Google Scholar 

  3. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).

    Article  ADS  Google Scholar 

  4. L. Y. Hsu, Phys. Rev. A 68, 022306 (2003).

    Article  ADS  Google Scholar 

  5. L. Hao, J. L. Li, and G. L. Long, Sci. China-Phys. Mech. Astron. 53, 491 (2010).

    Article  ADS  Google Scholar 

  6. S. Mertens, Phys. Rev. Lett. 81, 4281 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  7. D. J. Bernstein, S. Jeffery, T. Lange, and A. Meurer, Quantum algorithms for the subset-sum problem, in Post-Quantum Cryptography (Springer, Berlin-Heidelberg, 2013), pp. 16–33.

    Chapter  MATH  Google Scholar 

  8. F. Magniez, M. Santha, and M. Szegedy, SIAM J. Comput. 37, 413 (2007).

    Article  MathSciNet  Google Scholar 

  9. E. Aïmeur, G. Brassard, and S. Gambs, Mach. Learn. 90, 261 (2013).

    Article  MathSciNet  Google Scholar 

  10. N. Wiebe, A. Kapoor, and K. M. Svore, Quantum Inf. Comput. 15, 318 (2015).

    Google Scholar 

  11. J. A. Jones, M. Mosca, and R. H. Hansen, Nature 393, 344 (1998).

    Article  ADS  Google Scholar 

  12. L. M. K. Vandersypen, M. Steffen, M. H. Sherwood, C. S. Yannoni, G. Breyta, and I. L. Chuang, Appl. Phys. Lett. 76, 646 (2000).

    Article  ADS  Google Scholar 

  13. K. A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, Phys. Rev. A 72, 050306 (2005).

    Article  ADS  Google Scholar 

  14. L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature 460, 240 (2009).

    Article  ADS  Google Scholar 

  15. Y. Wu, Y. Wang, X. Qin, X. Rong, and J. Du, npj Quantum Inf. 5, 9 (2019).

    Article  ADS  Google Scholar 

  16. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature 434, 169 (2005).

    Article  ADS  Google Scholar 

  17. K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, Phys. Rev. Lett. 99, 120503 (2007).

    Article  ADS  Google Scholar 

  18. R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, Nature 445, 65 (2007).

    Article  ADS  Google Scholar 

  19. P. Høyer, Phys. Rev. A 62, 052304 (2000).

    Article  ADS  Google Scholar 

  20. G. L. Long, Phys. Rev. A 64, 022307 (2001).

    Article  ADS  Google Scholar 

  21. G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Contemp. Math. 305, 53 (2002).

    Article  Google Scholar 

  22. C. R. Hu, Phys. Rev. A 66, 042301 (2002).

    Article  ADS  Google Scholar 

  23. F. M. Toyama, W. van Dijk, and Y. Nogami, Quantum Inf. Process. 12, 1897 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  24. Y. Liu, and F. Zhang, Sci. China-Phys. Mech. Astron. 58, 070301 (2015).

    Google Scholar 

  25. T. Roy, L. Jiang, and D. I. Schuster, Phys. Rev. Res. 4, L022013 (2022).

    Article  Google Scholar 

  26. C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath, and C. Monroe, Nat. Commun. 8, 1918 (2017).

    Article  ADS  Google Scholar 

  27. A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, Nat. Commun. 5, 4213 (2014).

    Article  ADS  Google Scholar 

  28. J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, Science 349, 711 (2015).

    Article  MathSciNet  Google Scholar 

  29. A. Crespi, R. Osellame, R. Ramponi, M. Bentivegna, F. Flamini, N. Spagnolo, N. Viggianiello, L. Innocenti, P. Mataloni, and F. Sciarrino, Nat. Commun. 7, 10469 (2016).

    Article  ADS  Google Scholar 

  30. X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, Nat. Photon. 12, 534 (2018).

    Article  ADS  Google Scholar 

  31. C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, Nature 557, 660 (2018).

    Article  ADS  Google Scholar 

  32. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, Science 360, 285 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  33. J. C. Adcock, C. Vigliar, R. Santagati, J. W. Silverstone, and M. G. Thompson, Nat. Commun. 10, 3528 (2019).

    Article  ADS  Google Scholar 

  34. X. Qiang, Y. Wang, S. Xue, R. Ge, L. Chen, Y. Liu, A. Huang, X. Fu, P. Xu, T. Yi, F. Xu, M. Deng, J. B. Wang, J. D. A. Meinecke, J. C. F. Matthews, X. Cai, X. Yang, and J. Wu, Sci. Adv. 7, eabb8375 (2021).

    Article  ADS  Google Scholar 

  35. Y. Chi, J. Huang, Z. Zhang, J. Mao, Z. Zhou, X. Chen, C. Zhai, J. Bao, T. Dai, H. Yuan, M. Zhang, D. Dai, B. Tang, Y. Yang, Z. Li, Y. Ding, L. K. Oxenløwe, M. G. Thompson, J. L. O’Brien, Y. Li, Q. Gong, and J. Wang, Nat. Commun. 13, 1166 (2022).

    Article  ADS  Google Scholar 

  36. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walsmley, Optica 3, 1460 (2016).

    Article  ADS  Google Scholar 

  37. J. Bao, Z. Fu, T. Pramanik, J. Mao, Y. Chi, Y. Cao, C. Zhai, Y. Mao, T. Dai, X. Chen, X. Jia, L. Zhao, Y. Zheng, B. Tang, Z. Li, J. Luo, W. Wang, Y. Yang, Y. Peng, D. Liu, D. Dai, Q. He, A. L. Muthali, L. K. Oxenløwe, C. Vigliar, S. Paesani, H. Hou, R. Santagati, J. W. Silverstone, A. Laing, M. G. Thompson, J. L. O’Brien, Y. Ding, Q. Gong, and J. Wang, Nat. Photon. (2023).

  38. P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis, Phys. Rev. X 6, 031007 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qi Zhou.

Additional information

This work was supported by the National Key Research and Development Program (Grant No. 2017YFA0305200), the Key Research and Development Program of Guangdong Province of China (Grant Nos. 2018B030329001, and 2018B030325001), and the National Natural Science Foundation of China (Grant No. 61974168). X.-Q. Zhou acknowledges support from the National Young 1000 Talents Plan.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZH., Yu, GF., Wang, YX. et al. Experimental demonstration of deterministic quantum search algorithms on a programmable silicon photonic chip. Sci. China Phys. Mech. Astron. 66, 290311 (2023). https://doi.org/10.1007/s11433-023-2130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2130-9

Keywords

Navigation