Skip to main content
Log in

Transmission properties of metal mesh filters at 90 GHz

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Freestanding frequency-selective surfaces with cross-shaped aperture elements are investigated numerically and experimentally. Transmission characteristics of such two-dimensional periodic structures as functions of geometrical sizes are analyzed using the 3D finite element method. These structures find application in modern microwave and terahertz engineering as band-pass metal mesh filters. Utilizing the conjugate gradient method narrowband, 90 GHz filters have been developed and optimized numerically. The results of measurements carried out in the present study agree well with the obtained theoretical data. It is shown that some parameters of such metal mesh filters can be improved by the proper selection of structure periodicity. A single-layer filter with a fractional bandwidth of 5.3% and an insertion loss of − 0.5 dB at the central frequency is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Porterfield, D.W., Hesler, J.L., Densing, R., Mueller, E.R., Crowe, T.W., Weikle, R.M.: Resonant metal-mesh bandpass filters for the far infrared. Appl. Opt. 33(25), 6046–6052 (1994)

    Article  Google Scholar 

  2. Morrow, I.L., Thomas, P.: Compact frequency selective surface for polarization transform. Electron. Lett. 50(2), 64–65 (2014)

    Article  Google Scholar 

  3. Sivasami, R., Moorthy, B., Kanagasabi, M., George, J., Lawrance, L., Rajendran, D.B.: Polarization-independent single-layer ultra-wideband frequency-selective surface. Int. J. Microw. Wirel. Technol. 9(1), 93–97 (2017)

    Article  Google Scholar 

  4. Costa, F., Monorchio, A.: A frequency selective radome with wideband absorbing properties. IEEE Trans. Antennas Propag. 60(6), 2740–2747 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kuznetsov, S.A., Arzhannikov, A.V., Kubarev, V.V., Gelfand, A.V., Fedorinina, N.I., Goncharov, Y.G., Kalinin, P.V., Vinokurov, N.A., Goldenberg, B.G., Sorolla, M.: Passive metal mesh based quasi-optical selective components for subterahertz and terahertz applications. In: Proceedings of the 39th European Microwave Conference. Rome, Italy, pp. 173–176 (2009)

  6. Singh, P.K., Ameri, S.K., Chao, L., Afsar, M.N., Sonkusale, S.: Broadband millimeter wave metamaterial absorber based on embedding of dual resonators. Prog. Electromagn. Res. 142, 625–638 (2013)

    Article  Google Scholar 

  7. Dickie, R., Cahill, R., Fusco, V., Gamble, H.S., Mitchell, N.: THz frequency selective surface filters for earth observation remote sensing instruments. IEEE Trans. Terahertz Sci. Technol. 1(2), 450–461 (2011)

    Article  Google Scholar 

  8. Voisiat, B., Biciunas, A., Kasalynas, I., Raciukaitis, G.: Band pass filters for THz spectral range fabricated by laser ablation. Appl. Phys. A Mater. Sci. Process. 104(3), 953–958 (2011)

    Article  Google Scholar 

  9. Wang, Y., Yang, B., Tian, Y., Donnan, R.S., Lancaster, M.J.: Micromachined thick mesh filters for millimeter-wave and terahertz applications. IEEE Trans. Terahertz Sci. Technol. 4(2), 247–253 (2014)

    Article  Google Scholar 

  10. Bozzi, M.: Electromagnetic modeling of quasi-optical filters and frequency multipliers. Ph.D. Dissertation. Pavia University, Italy (2000)

  11. Tarasov, M.A., Gromov, V.D., Bogomolov, G.D., Otto, E.A., Kuzmin, L.S.: Fabrication and characteristics of mesh band filters. Instrum. Exp. Tech. 52(1), 74–78 (2009)

    Article  Google Scholar 

  12. Melo, A.M., Kornberg, M.A., Kaufmann, P., Piazzetta, M.H., Bortolucci, E.C., Zakia, M.B., Bauer, O.H., Poglitsch, S., Alves da Silva, A.M.P.: Metal mesh resonant filters for terahertz frequencies. Appl. Opt. 47(32), 6064–6069 (2008)

    Article  Google Scholar 

  13. Moller, K., Warren, J.B., Heaney, J.B., Kotecki, C.: Cross shaped bandpass filters for the near- and mid-infrared wavelength regions. Appl. Opt. 35(31), 6210–6215 (1999)

    Article  Google Scholar 

  14. Sawada, H., Ishizu, K., Kojima, F., Ogawa, H., Nakamura, K., Iwasawa, N., Kawasaki, K., Shibagaki, N.: 90-GHz band propagation characteristics in viaduct environment for railway radiocommunication system between train and trackside. In: Proceedings of the 20th International Symposium on Wireless Personal Multimedia Communications, Bali, Indonesia, pp. 79–81 (2017)

  15. Alaverdyan, S.A., Kabanov, I.N., Komarov, V.V., Meschanov, V.P.: Optimization of two-dimensional periodic structures with cross-shaped aperture elements. J. Commun. Technol. Electron. 61(10), 1081–1085 (2016)

    Article  Google Scholar 

  16. COMSOL V.5 (2015) https://www.comsol.com (Online)

  17. Koziel, S., Yang, X.-S., Zhang, Q.-J. (eds.): Simulation-Driven Design Optimization and Modeling for Microwave Engineering. Imperial College Press, London (2013)

    Google Scholar 

  18. Sarkar, T.K.: Application of Conjugate Gradient Method to Electromagnetics and Signal Analysis. Elsevier, New York (1991)

    Google Scholar 

  19. Pozar, D.: Microwave Engineering. Wiley, New York (2005)

    Google Scholar 

  20. Bose, G.: IC Fabrication Technology. McGraw Hill Publising, New York (2014)

    Google Scholar 

  21. Jung, J.-W., Choi, G.-M., Kim, D.-J.: Experimental study on spray etching process in micro fabrication of lead frame. KSME Int. J. 18(12), 2294–2302 (2004)

    Article  Google Scholar 

  22. Li, Z., Papalambros, P.Y., Volakis, J.L.: Frequency selective surface design by integrating optimization algorithms with fast full wave numerical methods. IEE Proc. Microw. Antennas Propag. 149(3), 175–180 (2002)

    Article  Google Scholar 

  23. Fallahi, A., Mishrikey, M., Hafner, C., Vahldieck, R.: Efficient procedures for the optimization of frequency selective surfaces. IEEE Trans. Antennas Propag. 56(5), 1340–1349 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Federal Ministry of Education and Science of the Russian Federation (State Contract No. 3.7135.2017/BP) and DAAD (Project No. 91692530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav V. Komarov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarov, V.V., Meschanov, V.P. Transmission properties of metal mesh filters at 90 GHz. J Comput Electron 18, 696–704 (2019). https://doi.org/10.1007/s10825-019-01319-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01319-1

Keywords

Navigation