Skip to main content
Log in

Impact of triple-material gate and highly doped source/drain extensions on sensitivity of DNA biosensors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Gate engineering and highly doped source/drain region have been investigated to design a new DNA sensor for use in biomedical applications based on a double gate (DG) dielectric modulated (DM) junctionless (JL) metal oxide semiconductor field effect transistor (MOSFET) with triple material (TM) gate. Based on the dielectric modulation effect, DNA molecules in the nanogap cavity change due to the charge density of biomolecules, producing a change in the threshold voltage of the device. Analytical and numerical analysis was carried out to reveal the impact of physical parameters on the sensitivity of the proposed biosensor. Various characteristics, such as the surface potential, threshold voltage, and drain current were also investigated. The effectiveness of the proposed TM-DG-DM-JL-MOSFET structure with highly doped source/drain extensions is confirmed by comparison of the results with those for a conventional single-materiel (SM) gate DM-JL-MOSFET, revealing a good improvement in sensitivity and making the proposed structure an attractive solution for use in DNA-based sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim, J.M., Jha, S.K., Chand, R., Lee, D.H., Kim, Y.S.: Flexible pentacene thin film transistors as DNA hybridization sensor. In: IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Proceeding, Kaohsiung, Taiwan, pp. 421–424 (2011)

  2. Patolsky, F., Lichtenstein, A., Willner, I.: Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat. Biotechnol. 19, 253–257 (2001)

    Article  Google Scholar 

  3. Nam, J.M., Stoveva, S.I., Mirkin, C.A.: Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc. 126, 5932–5933 (2004)

    Article  Google Scholar 

  4. Ramsay, G.: DNA chip: state-of-the art. Nat. Biotechnol. 16, 40–44 (1998)

    Article  Google Scholar 

  5. Marshall, A., Hhodgson, J.: DNA chips: an array of possibilities. Nat. Biotechnol. 16, 27–31 (1998)

    Article  Google Scholar 

  6. Pividori, M.I., Merkoci, A., Alegret, S.: Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens. Bioelectron. 15, 291–303 (2000)

    Article  Google Scholar 

  7. Kim, C.H., Jung, C., Park, H.G., Choi, Y.K.: Novel dielectric modulated field-effect transistor for label-free DNA detection. Biochip J. 2(2), 127–134 (2008)

    Google Scholar 

  8. Jang, D.Y., et al.: Sublithographic vertical gold nano-gap for label-free electrical detection of protein–ligand binding. J. Vac. Sci. Technol. B25, 443–447 (2007)

    Article  Google Scholar 

  9. Peng, H., et al.: Label-free electrochemical DNA sensor based on functionalized conducting copolymer. Biosens. Bioelectron. 20, 1821–1828 (2005)

    Article  MathSciNet  Google Scholar 

  10. Chen, J.-C., Chou, J.-C., Sun, T.-P., Hsiung, S.-K.: Portable urea biosensor based on the extended-gate field effect transistor. Sens. Actuators B Chem. 91(1–3), 180–186 (2003)

    Article  Google Scholar 

  11. Kim, D.-S., Park, J.-E., et al.: An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes. Sens. Actuator B Chem. 117(2), 488–494 (2006)

    Article  Google Scholar 

  12. Schöning, M.J., Poghossian, A.: Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127(9), 1137–1151 (2002)

    Article  Google Scholar 

  13. Bergveld, P.: Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 88(1), 1–20 (2003)

    Article  Google Scholar 

  14. Park, K.Y., Choi, S.B., Lee, M., Sohn, B.K., Choi, S.Y.: ISFET glucose sensor system with fast recovery characteristics by employing electrolysis. Sens. Actuators B Chem. 83(1–3), 90–97 (2002)

    Article  Google Scholar 

  15. Phogossian, A., Schoning, J., et al.: An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime. Sens. Actuators B Chem. 76(1–3), 519–526 (2001)

    Article  Google Scholar 

  16. Choi, J.M., Han, J.W., Choi, S.J., Choi, Y.K.: Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)

    Article  Google Scholar 

  17. Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)

    Article  Google Scholar 

  18. Stern, E., Klemic, J.F., et al.: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519–523 (2007)

    Article  Google Scholar 

  19. Li, Z., Chen, Y., et al.: Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 4(2), 245–247 (2004)

    Article  Google Scholar 

  20. Hahm, J., Lieber, C.M.: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4(1), 51–54 (2004)

    Article  Google Scholar 

  21. Curreli, M., Zhang, R., et al.: Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans. Nanotechnol. 7(6), 651–667 (2008)

    Article  Google Scholar 

  22. Qi, P., Vermesh, O., Grecu, M., et al.: Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 3(3), 347–351 (2003)

    Article  Google Scholar 

  23. Star, A., Tu, E., Niemann, J., et al.: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. USA 103(4), 921–926 (2006)

    Article  Google Scholar 

  24. Martinez, M.T., Tseng, Y.-C., et al.: Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett. 9(2), 530–536 (2009)

    Article  Google Scholar 

  25. Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)

    Article  Google Scholar 

  26. Kim, C.-H., Jung, C., Lee, K.-B., Park, H.G., Choi, Y.-K.: Label-free DNA detection with a nanogap embedded complementary metal oxide semiconductor. Nanotechnology 22(13), 135502-1–135502-5 (2011)

    Article  Google Scholar 

  27. Gu, B., Park, T.J., Ahn, J.-H., Huang, X.-J., Lee, S.Y., Choi, Y.-K.: Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)

    Article  Google Scholar 

  28. Im, M., Ahn, J.-H., Han, J.-W., Park, T.J., Lee, S.Y., Choi, Y.K.: Development of a point-of-care testing platform with a nanogap-embedded separated double-gate field effect transistor array and its readout system for detection of avian influenza. IEEE Sens. J. 11(2), 351–360 (2011)

    Article  Google Scholar 

  29. Kim, C.-H., Jung, C., Park, H.G., Choi, Y.-K.: Novel dielectric-modulated field-effect transistor for label-free DNA detection. Biochip J. 2(2), 127–134 (2008)

    Google Scholar 

  30. Kim, S., Baek, D., Kim, J.-Y., Choi, S.-J., Seol, M.-L., Choi, Y.-K.: A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 101(7), 073703-1–073703-4 (2012)

    Google Scholar 

  31. Kim, S., Ahn, J.-H., Park, T.J., Lee, S.Y., Choi, Y.-K.: A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor. Appl. Phys. Lett. 94(24), 243903 (2009)

    Article  Google Scholar 

  32. Kim, C.-H., Ahn, J.-H., Lee, K.-B., Jung, C., Park, H.G., Choi, Y.-K.: A new sensing metric to reduce data fluctuations in a nanogap embedded field-effect transistor biosensor. IEEE Trans. Electron Devices 59(10), 2825–2831 (2012)

    Article  Google Scholar 

  33. Kim, S., Ahn, J.-H., Park, T.J., Lee, S.Y., Choi, Y.-K.: Charge pumping technique to analyze the effect of intrinsically retained charges and extrinsically trapped charges in biomolecules by use of a nanogap embedded biotransistor. Appl. Phys. Lett. 96(5), 053701 (2010)

    Article  Google Scholar 

  34. Kannan, N., Kumar, M.J.: Dielectric-modulated impact-ionization MOS transistor as a labelfree biosensor. IEEE Electron Device Lett. 34(12), 1575–1577 (2013)

    Article  Google Scholar 

  35. Kim, S., Ahn, J.H., Park, T.J., Lee, S.Y., Choi, Y.K.: Comprehensive study of a detection mechanism and optimization strategies to improve sensitivity in a nanogap-embedded biotransistor. J. Appl. Phys. 107(11), 114705 (2010)

    Article  Google Scholar 

  36. Kanungo, S., Chattopadhyay, S., Gupta, P.S., Rahaman, H.: Comparative performance analysis of the dielectrically modulated full gate and short-gate tunnel FET-based biosensors. IEEE Trans. Electron Devices 62(3), 994–1001 (2015)

    Article  Google Scholar 

  37. Ajay, S., Narang, R., Saxena, M., Gupta, M.: Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a bio-sensors. Superlattices Microstruct. 85, 557–572 (2015)

    Article  Google Scholar 

  38. Parihar, M.S., Kranti, A.: Enhanced sensitivity of double gate junctionless transistor architecture for bio-sensing applications. Nanotechnology 26, 145201 (2015)

    Article  Google Scholar 

  39. Chakraborty, A., Sarkar, A.: Analytical modeling and sensitivity analysis of dielectric-modulated junction-less gate stack surrounding gate MOSFET (JLGS-SRG) for application as biosensor. J. Comput. Electron. 16, 556–567 (2017)

    Article  Google Scholar 

  40. Chebaki, E., Djeffal, F., Ferhati, H., Bentrcia, T.: Improved analog/RF performance of double gate junctionless MOSFET using both gate material engineering and drain/source extensions. Superlattices Microstruct. 92, 80–91 (2016)

    Article  Google Scholar 

  41. Razavi, P., Orouji, A.A.: Dual material gate oxide stack symmetric double gate MOSFET: improving short channel effects of nanoscale double gate MOSFET. In: Electronics Conference, 2008. BEC 2008. 11th International Biennial Baltic, IEEE, pp. 83–86 (2008)

  42. Ahangari, Z.: Performance assessment of dual material gate dielectric modulated nanowire junctionless MOSFET for ultrasensitive detection of biomolecules. RSC Adv. 6(92), 89185–89191 (2016)

    Article  Google Scholar 

  43. Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46, 865–870 (1999)

    Article  Google Scholar 

  44. Kumar, M.J., Chaudhary, A.: Two-dimensional analytical modeling of fully depleted DMG SOI MOS-FET and evidence for diminished SCEs. IEEE Trans. Electron Devices 51(4), 569–574 (2004)

    Article  Google Scholar 

  45. Jouri, M., ShahrokhAbadi, M.H.: Analytical investigation of triple-material cylindrical gate surrounded (TM-CGS) MOSFETs with high-K material oxide. Phys. J. 1(3), 325–330 (2015)

    Google Scholar 

  46. Baral, B., Das, A.K., De, D., Sarkar, A.: An analytical model of triple-material double gate metal oxide semiconductor field-effect transistor to suppress short channel effects. Int. J. Numer. Model. 29, 47–62 (2015)

    Article  Google Scholar 

  47. Razavi, P., Orouji, A.A.: Nanoscale triple material double gate (TM-DG) MOSFET for improving short channel effects. In: Advances in Electronics and Micro-electronics, 2008, Valencia, Spain, 29 September–4 October (2008)

  48. Tiwari, P.K., Dubey, S., Singh, M., Jit, S.: A two-dimensional analytical model for threshold voltage of short-channel triple-material-gate metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 108, 074508 (2010)

    Article  Google Scholar 

  49. Dubey, S., Santra, A., Saramekala, G., Kumar, M., Tiwari, P.K.: An analytical threshold voltage model for triple-material cylindrical gate-all-around (TM-CGAA) MOSFETs. IEEE Trans. Electron Nanotechnol. 12(5), 766–774 (2013)

    Article  Google Scholar 

  50. Kinsella, J.M., Ivanisevic, A.: Taking charge of biomolecules. Nat. Nanotechnol. 2, 596–597 (2007)

    Article  Google Scholar 

  51. Young, K.K.: Short-channel effect in fully depleted SOI MOSFET’s. IEEE Trans. Electron Devices 36(2), 399 (1989)

    Article  Google Scholar 

  52. ATLAS User Manual: Device Simulation Software (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ouarghi.

Appendices

Appendix A

$$ \sigma_{i} = - \frac{{\beta_{i} }}{{\alpha_{i} }}, $$
$$ D_{1 } = \frac{{(V_{\text{bi}} - \sigma_{1} ) - \left( {V_{1} - \sigma_{1} } \right)\mathrm{e}^{{ - L_{1} \sqrt {\alpha_{1} } }} }}{{1 - \mathrm{e}^{{ - 2L_{1} \sqrt {\alpha_{1} } }} }} , $$
$$ E_{1 } = \frac{{\left( {V_{1} - \sigma_{1} } \right) - (V_{\text{bi}} - \sigma_{1} )\mathrm{e}^{{ - L_{1} \sqrt {\alpha_{1} } }} }}{{1 - \mathrm{e}^{{ - 2L_{1} \sqrt {\alpha_{1} } }} }}, $$
$$ D_{2} = \frac{{(V_{1} - \sigma_{2} ) - \left( {V_{2} - \sigma_{2} } \right)\mathrm{e}^{{ - L_{2} \sqrt {\alpha_{2} } }} }}{{1 - \mathrm{e}^{{ - 2L_{2} \sqrt {\alpha_{2} } }} }} , $$
$$ E_{2 } = \frac{{\left( {V_{2} - \sigma_{2} } \right) - (V_{1} - \sigma_{2} )\mathrm{e}^{{ - L_{2} \sqrt {\alpha_{2} } }} }}{{1 - \mathrm{e}^{{ - 2L_{2} \sqrt {\alpha_{2} } }} }}, $$
$$ D_{3} = \frac{{\left( {V_{2} - \sigma_{3} } \right) - (V_{\text{bi}} + V_{\text{ds}} - \sigma_{3} )\mathrm{e}^{{ - L_{3} \sqrt {\alpha_{3} } }} }}{{1 - \mathrm{e}^{{ - 2L_{3} \sqrt {\alpha_{3} } }} }}, $$

where Vbi is the built-in potential, V1 and V2 are intermediate potentials, obtained by maintaining the continuity of the potential at the interface between region I, II, and III. Thus, we obtain

$$ A_{1} V_{1} + B_{1} V_{2} = F_{1}, $$
$$ A_{2} V_{1} + B_{2} V_{2} = {\text{F}}_{2}, $$

where

$$ A_{1} = \frac{{\mathrm{e}^{{2L_{1} \sqrt {\alpha_{1} } }} + 1}}{{\mathrm{e}^{{2L_{1} \sqrt {\alpha_{1} } }} - 1}} + \frac{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} + 1}}{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} - 1}}, $$
$$ B_{1} = \frac{ - 2}{{\mathrm{e}^{{L_{2} \sqrt {\alpha_{2} } }} - \mathrm{e}^{{ - L_{2} \sqrt {\alpha_{2} } }} }}, $$
$$\begin{aligned} F_{1} &= V_{\rm bi} \left( {\frac{2}{{\mathrm{e}^{{L_{1} \sqrt {\alpha_{1} } }} - \mathrm{e}^{{ - L_{1} \sqrt {\alpha_{1} } }} }}} \right)\\ & \quad + \delta_{1} \left( {\frac{2}{{\mathrm{e}^{{L_{1} \sqrt {\alpha_{1} } }} - \mathrm{e}^{{ - L_{1} \sqrt {\alpha_{1} } }} }} - \frac{{\mathrm{e}^{{2L_{1} \sqrt {\alpha_{1} } }} + 1}}{{\mathrm{e}^{{2L_{1} \sqrt {\alpha_{1} } }} - 1}}} \right)\\ & \quad + \delta_{2} \left( {\frac{2}{{\mathrm{e}^{{L_{2} \sqrt {\alpha_{2} } }} - \mathrm{e}^{{ - L_{2} \sqrt {\alpha_{2} } }} }} - \frac{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} + 1}}{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} - 1}}} \right),\end{aligned} $$
$$ A_{2} = \frac{ - 2}{{\mathrm{e}^{{L_{2} \sqrt {\alpha_{2} } }} - \mathrm{e}^{{ - L_{2} \sqrt {\alpha_{2} } }} }}, $$
$$ B_{2} = \frac{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} + 1}}{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} - 1}} + \frac{{\mathrm{e}^{{2L_{3} \sqrt {\alpha_{3} } }} + 1}}{{\mathrm{e}^{{2L_{3} \sqrt {\alpha_{3} } }} - 1}}, $$
$$\begin{aligned} F_{2} &= (V_{\rm bi} + V_{\rm ds} )\left( {\frac{2}{{\mathrm{e}^{{L_{3} \sqrt {\alpha_{3} } }} - \mathrm{e}^{{ - L_{3} \sqrt {\alpha_{3} } }} }}} \right)\\&\quad + \delta_{2} \left( {\frac{2}{{\mathrm{e}^{{L_{2} \sqrt {\alpha_{2} } }} - \mathrm{e}^{{ - L_{2} \sqrt {\alpha_{2} } }} }} - \frac{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} + 1}}{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} - 1}}} \right)\\&\quad + \delta_{3} \left( {\frac{2}{{\mathrm{e}^{{L_{3} \sqrt {\alpha_{3} } }} - \mathrm{e}^{{ - L_{3} \sqrt {\alpha_{3} } }} }} - \frac{{\mathrm{e}^{{2L_{3} \sqrt {\alpha_{3} } }} + 1}}{{\mathrm{e}^{{2L_{3} \sqrt {\alpha_{3} } }} - 1}}} \right).\end{aligned} $$

Using Crammer’s rule, it is possible to obtain the values of the intermediate potential V1 and V2 at the interfaces of regions I, II, and III as follows:

$$ V_{1} = \frac{{\left| {\begin{array}{*{20}c} {{{F}}_{1} } & {{{B}}_{1} } \\ {{{F}}_{2} } & {{{B}}_{2} } \\ \end{array} } \right|}}{{\left| {\begin{array}{*{20}c} {A_{1} } & {{{B}}_{1} } \\ {A_{2} } & {{{B}}_{2} } \\ \end{array} } \right|}} = \frac{{{{F}}_{1} {{B}}_{2} - F_{2} {{B}}_{1} }}{{A_{1} {{B}}_{2} - A_{2} {{B}}_{1} }} , $$
$$ V_{2} = \frac{{\left| {\begin{array}{*{20}c} {A_{1} } & {{{F}}_{1} } \\ {A_{2} } & {{{F}}_{2} } \\ \end{array} } \right|}}{{\left| {\begin{array}{*{20}c} {A_{1} } & {{{B}}_{1} } \\ {A_{2} } & {{{B}}_{2} } \\ \end{array} } \right|}} = \frac{{A_{1} {{F}}_{2} - F_{1} {{A}}_{2} }}{{A_{1} {{B}}_{2} - A_{2} {{B}}_{1} }}. $$

Appendix B

$$ m_{1 } = 2 \times \mathrm{e}^{{ - {{L}}_{1} \sqrt {\alpha_{1} } }} \left( {\frac{{\left( {V_{\rm bi} + r_{{i}} } \right)\mathrm{e}^{{ - {{L}}_{1} \sqrt {\alpha_{1} } }} - \left( {V_{s1} + r_{{i}} } \right)}}{{1 - {\text{e}}^{{ - 2{{L}}_{1} \sqrt {\alpha_{1} } }} }}} \right), $$
$$ m_{2 } = 2 \times \frac{{\left( {V_{\rm bi} + r_{{i}} } \right) - \left( {V_{s1} + r_{{i}} } \right)\mathrm{e}^{{ - {{L}}_{1} \sqrt {\alpha_{1} } }} }}{{1 - {\text{e}}^{{ - 2{{L}}_{1} \sqrt {\alpha_{1} } }} }}, $$
$$ n_{1} = 2\times \mathrm{e}^{{ - {{L}}_{1} \sqrt {\alpha_{1} } }} \left( {\frac{{1 - V_{s2} - \mathrm{e}^{{ - {{L}}_{1} \sqrt {\alpha_{1} } }} }}{{1 - {\text{e}}^{{ - 2{{L}}_{1} \sqrt {\alpha_{1} } }} }}} \right), $$
$$ n_{2} = 2\times \frac{{\mathrm{e}^{{ - {{L}}_{1} \sqrt {\alpha_{1} } }} - V_{{s2\mathrm{e}^{{ - {{L}}_{1} \sqrt {\alpha_{1} } }} }} - 1}}{{1 - {\text{e}}^{{ - 2{{L}}_{1} \sqrt {\alpha_{1} } }} }}, $$
$$ V_{\rm s1} = \frac{{{{C}}_{11} {{B}}_{2} - C_{21} {{B}}_{1} }}{{A_{1} {{B}}_{2} - A_{2} {{B}}_{1} }}V_{s2} = \frac{{C_{12} B_{2} - C_{22} B_{1} }}{{A_{1} B_{2} - A_{2} B_{1} }}, $$
$$ p_{i} = \frac{{qN_{\rm f} }}{{C_{i} }} + V_{\mathrm{fbi}} + 2\left( {V_{t} ln\frac{{N_{\rm d} }}{n_{\rm i}}} \right), $$
$$\begin{aligned} C_{11} &= \left( {\frac{2}{{\mathrm{e}^{{L_{2} \sqrt {\alpha_{2} } }} - \mathrm{e}^{{ - L_{2} \sqrt {\alpha_{2} } }} }} - \frac{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} + 1}}{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} - 1}}} \right)r_{2}\\ &\quad + \left( {\frac{2}{{\mathrm{e}^{{L_{1} \sqrt {\alpha_{1} } }} - \mathrm{e}^{{ - L_{1} \sqrt {\alpha_{1} } }} }} - \frac{{\mathrm{e}^{{2L_{1} \sqrt {\alpha_{1} } }} + 1}}{{\mathrm{e}^{{2L_{1} \sqrt {\alpha_{1} } }} - 1}}} \right)r_{1}\\&\quad + V_{\rm bi} \left( {\frac{2}{{\mathrm{e}^{{L_{1} \sqrt {\alpha_{1} } }} - \mathrm{e}^{{ - L_{1} \sqrt {\alpha_{1} } }} }}} \right), \end{aligned} $$
$$ \begin{aligned} C_{21} &= \frac{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} + 1}}{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} - 1}} - \frac{2}{{\mathrm{e}^{{L_{2} \sqrt {\alpha_{2} } }} - \mathrm{e}^{{ - L_{2} \sqrt {\alpha_{2} } }} }} + \frac{{\mathrm{e}^{{2L_{1} \sqrt {\alpha_{1} } }} + 1}}{{\mathrm{e}^{{2L_{1} \sqrt {\alpha_{1} } }} - 1}}\\&\quad - \frac{2}{{\mathrm{e}^{{L_{1} \sqrt {\alpha_{1} } }} - \mathrm{e}^{{ - L_{1} \sqrt {\alpha_{1} } }} }},\end{aligned} $$
$$ \begin{aligned} C_{12} &= \left( {\frac{2}{{\mathrm{e}^{{L_{2} \sqrt {\alpha_{2} } }} - \mathrm{e}^{{ - L_{2} \sqrt {\alpha_{2} } }} }} - \frac{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} + 1}}{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} - 1}}} \right)r_{2}\\&\quad + \left( {\frac{2}{{\mathrm{e}^{{L_{3} \sqrt {\alpha_{3} } }} - \mathrm{e}^{{ - L_{3} \sqrt {\alpha_{3} } }} }} - \frac{{\mathrm{e}^{{2L_{3} \sqrt {\alpha_{3} } }} + 1}}{{\mathrm{e}^{{2L_{3} \sqrt {\alpha_{3} } }} - 1}}} \right)r_{3}\\&\quad + \left( {V_{\rm bi} + V_{\rm ds} } \right)\left( {\frac{2}{{\mathrm{e}^{{L_{3} \sqrt {\alpha_{3} } }} - \mathrm{e}^{{ - L_{3} \sqrt {\alpha_{3} } }} }}} \right),\end{aligned} $$
$$ \begin{aligned} C_{22} &= \frac{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} + 1}}{{\mathrm{e}^{{2L_{2} \sqrt {\alpha_{2} } }} - 1}} - \frac{2}{{\mathrm{e}^{{L_{2} \sqrt {\alpha_{2} } }} - \mathrm{e}^{{ - L_{2} \sqrt {\alpha_{2} } }} }} + \frac{{\mathrm{e}^{{2L_{3} \sqrt {\alpha_{3} } }} + 1}}{{\mathrm{e}^{{2L_{3} \sqrt {\alpha_{3} } }} - 1}}\\&\quad - \frac{2}{{\mathrm{e}^{{L_{3} \sqrt {\alpha_{3} } }} - \mathrm{e}^{{ - L_{3} \sqrt {\alpha_{3} } }} }}, \end{aligned} $$
$$ r_{i} = - \frac{{{{qN}}_{\text{d}} }}{{\varepsilon_{\text{Si}} }} + V_{\mathrm{fb}i} ,\quad i = 1,2,3. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouarghi, M., Dibi, Z. & Hedjazi, N. Impact of triple-material gate and highly doped source/drain extensions on sensitivity of DNA biosensors. J Comput Electron 17, 1797–1806 (2018). https://doi.org/10.1007/s10825-018-1228-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1228-3

Keywords

Navigation