Skip to main content
Log in

Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An analytical model of dielectric-modulated junctionless gate-stack surrounding gate MOSFET for application as a biosensor is presented. An expression for the channel-center potential is obtained by solving the 2-D Poisson’s equation using a parabolic-potential approach. An analytical model for the threshold voltage is developed from the minimum channel-center potential to analyze the sensitivity of the biosensor. Moreover, the effects of the variation of the different device dimensional parameters on the sensitivity of the biosensor were investigated in order to study the dielectric modulation effects due to the permittivity changes by the biomolecules present within the nanogap cavity. The analytical model is verified and validated with the help of TCAD device simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bergveld, P.: The development and application of FET-based biosensors. Biosensors 2(1), 15–33 (1986)

    Article  Google Scholar 

  2. Wenga, G., Jacques, E., Salaun, A.-C., et al.: Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor. Biosens. Bioelectron. 40(1), 141–146 (2013)

    Article  Google Scholar 

  3. Guan, W., Duan, X., Reed, M.A.: Highly specific and sensitive nonenzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors. Biosens. Bioelectron. 51, 225–231 (2014)

    Article  Google Scholar 

  4. Oh, S.W., Moon, J.D., Lim, H.J., Park, S.Y., Kim, T., Park, J.B., Han, M.H., Snyder, M., Choi, E.Y.: Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB J. 19(10), 13551337 (2005)

    Google Scholar 

  5. Drummond, T.G., Hill, M.G., Barton, J.K.: Electrochemical DNA sensors. Nat. Biotechnol. 21(10), 1192–1199 (2003)

    Article  Google Scholar 

  6. Fritz, J., Baller, M.K., Lang, H.P., Rothuizen, H., Vettiger, P., Meyer, E., Güntherodt, H.-J., Gerber, Ch., Gimzewski, J.K.: Translating biomolecular recognition into nanomechanics. Science 288(5464), 316–318 (2000)

    Article  Google Scholar 

  7. Huang, X.-J., Choi, Y.-K., Im, H.-S., Yarimaga, O., Yoon, E., Kim, H.-S.: Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sens. Basel Sens. 6(7), 756–782 (2006)

    Article  Google Scholar 

  8. Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nanotechnol. Lett. 6(4), 583–586 (2006)

    Google Scholar 

  9. Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)

    Article  Google Scholar 

  10. Chen, K.I., Li, B.-R., Chen, Y.-T.: Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2), 131–154 (2011)

    Article  Google Scholar 

  11. Allen, B.L., Kichambare, P.D., Star, A.: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439–1451 (2007)

    Article  Google Scholar 

  12. Chan, W.C.W., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M., Nie, S.: Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13(1), 40–46 (2002)

    Article  Google Scholar 

  13. Curreli, M., Zhang, R., Ishikawa, F.N., Chang, H.-K., Cote, R.J., Zhou, C., Thompson, M.E.: Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans. Nanotechnol. 7(6), 651–667 (2008)

    Article  Google Scholar 

  14. Syahir, A., Usui, K., Tomizaki, K.-Y., Kajikawa, K., Mihara, H.: Label and label-free detection techniques for protein microarrays. Microarrays 4, 228–244 (2015)

    Article  Google Scholar 

  15. Ohno, Y., Maehashi, K., Matsumoto, K.: Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132, 18012–18013 (2010)

    Article  Google Scholar 

  16. Sarkar, D., Liu, W., Xie, X., Anselmo, A.C., Mitragotri, S., Banerjee, Kaustav: MoS2 field-effect transistor for next-generation label-free biosensors. Acs Nano 8(4), 3992–4003 (2014)

    Article  Google Scholar 

  17. Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)

    Article  Google Scholar 

  18. Gu, B., Park, T.J., Ahn, J.-H., Huang, X.-J., Lee, S.Y., Choi, Y.-K.: Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)

    Article  Google Scholar 

  19. Kim, C.-H., Jung, C., Park, H.G., Choi, Y.-K.: Novel dielectric modulated field-effect transistor for label-free DNA detection. Biochip J. 2(2), 127–134 (2008)

    Google Scholar 

  20. Choi, J.-M., Han, J.-W., Choi, S.-J., Choi, Y.-K.: Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)

    Article  Google Scholar 

  21. Kannan, N., Jagadesh Kumar, M.: Dielectric-modulated impact-ionization MOS (DIMOS) transistor as a label-free biosensor. IEEE Electron Device Lett. 34(12), 1575–1577 (2013)

    Article  Google Scholar 

  22. Kannan, N., Kumar, M.J.: Charge-modulated underlap I-MOS transistor as a label-free biosensor: a simulation study. IEEE Trans. Electron Devices 62(8), 26452651 (2015)

    Article  Google Scholar 

  23. Kanungo, S., Gupta, P.S., Rhaman, H.: Effects of Germanium mole fraction variation at the source of a dielectrically modulated Tunneling FET based biosensor. In: 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), pp. 1–5, 6–8 (2014)

  24. Narang, R., Reddy, K.V.S., Saxena, M., Gupta, R.S., Gupta, M.: A Dielectric-modulated tunnel-FET-based biosensor for label-free detection: analytical modeling study and sensitivity analysis. IEEE Trans. Electron Devices 59(10), 2809–2817 (2012)

    Article  Google Scholar 

  25. Chiang, T.-K.: A new quasi-2-D threshold voltage model for short-channel junctionless cylindrical surrounding gate (JLCSG) MOSFETs. IEEE Trans. Electron Devices 59(11), 3127–3129 (2012)

    Article  Google Scholar 

  26. Hu, G., Ping, X., Zhihao, D., Ran, L., Lingli, W., Tang, T.-A.: Analytical models for electric potential, threshold voltage, and subthreshold swing of junctionless surrounding-gate transistors. IEEE Trans. Electron Devices 61(3), 688–695 (2014)

    Article  Google Scholar 

  27. Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Theory of the junctionless nanowire FET. IEEE Trans. Electron Devices 58(9), 2903–2910 (2011)

    Article  Google Scholar 

  28. Duarte, J.P., Choi, S.J., Moon, D.I., Choi, Y.K.: Simple analytical bulk current model for long-channel double-gate junctionless transistors. IEEE Electron Device Lett. 32(6), 704–706 (2011)

    Article  Google Scholar 

  29. Buitrago, E., Giorgos, F., Badia, M.F.B., Georgiev, Y.M., Berthomé, M., Ionescu, A.M.: Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sens. Actuators B Chem. 183, 1–10 (2013)

    Article  Google Scholar 

  30. Nair, P.R., Alam, M.A.: Design considerations of silicon nanowire biosensors. IEEE Trans. Electron Devices 54(12), 3400–3408 (2007)

    Article  Google Scholar 

  31. Narang, R., Saxena, M., Gupta, M.: Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors. Superlattices Microstruct. 85, 557–572 (2015)

    Article  Google Scholar 

  32. Ahangari, Z.: Performance assessment of dual material gate dielectric modulated nanowire junctionless MOSFET for ultrasensitive detection of biomolecules. RSC Adv. 6(92), 89185–89191 (2016)

    Article  Google Scholar 

  33. Parihar, M.S., Kranti, A.: Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications. Nanotechnology 26(14), 145201 (2015)

    Article  Google Scholar 

  34. Barik, M.A., Deka, R., Dutta, J.C.: Carbon nanotube-based dual-gated junctionless field-effect transistor for acetylcholine detection. IEEE Sens. J. 16(2), 280–286 (2016)

    Article  Google Scholar 

  35. Liu, K.M., Peng, F.I., Peng, K.P., Lin, H.-C., Huang, T.Y.: The effects of channel doping concentration for n-type junction-less double-gate poly-Si nanostrip transistors. Semicond. Sci. Technol. 29(5), 055001 (2014)

    Article  Google Scholar 

  36. Wilk, G.D., Wallace, R.M., Anthony, J.M.: High-\(\kappa \) gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89(10), 5243–5275 (2001)

    Article  Google Scholar 

  37. Buchanan, D.A.: Scaling the gate dielectric: materials, integration, and reliability. IBM J. Res. Dev. 43(3), 245–264 (1999)

    Article  Google Scholar 

  38. Poonam, K., Saxena, M., Gupta, R.S.: Modeling and simulation of STacked Gate Oxide (STGO) architecture in silicon-on-nothing (SON) MOSFET. Solid State Electron. 49(10), 1639–1648 (2005)

    Article  Google Scholar 

  39. Lee, C.H., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: Performance estimation of junctionless multigate transistors. Solid State Electron. 54(2), 97–103 (2010)

    Article  Google Scholar 

  40. Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)

    Article  Google Scholar 

  41. Colinge, J.P., Kranti, A., Yan, R., Lee, W., Ferain, I., Yu, R., Dehdashti Akhavan, N., Razavi, P.: unctionless nanowire transistor (JNT): properties and design guidelines. Solid State Electron. 65, 33–37 (2011)

    Article  Google Scholar 

  42. Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)

    Article  Google Scholar 

  43. Rewari, S., Nath, V., Haldar, S., Deswal, S.S., Gupta, R.S.: Improved analog and AC performance with increased noise immunity using nanotube junctionless field effect transistor (NJLFET). Appl. Phys. A 122(12), 1049 (2016)

    Article  Google Scholar 

  44. Chanda, M., Dey, P., De, S., Sarkar, C.K.: Novel charge plasma based dielectric modulated impact ionization MOSFET as a biosensor for label-free detection. Superlattices Microstruct. 86, 446–455 (2015)

    Article  Google Scholar 

  45. Mondal, P., Ghosh, B., Bal, P.: Planar junctionless transistor with non-uniform channel doping. Appl. Phys. Lett. 102(13), 133505 (2013)

    Article  Google Scholar 

  46. Sahay, S., Kumar, M.J.: Realizing efficient volume depletion in SOI junctionless FETs. IEEE J. Electron Devices Soc. 4(3), 110–115 (2016)

    Article  Google Scholar 

  47. Hubbard, K.J., Schlom, D.G.: Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11(11), 2757–2776 (1996)

    Article  Google Scholar 

  48. SILVACO Data Systems Inc.: ATLAS User’s Manual Version 5.15.32.R. Silvaco Inc., Santa Clara, CA (2010). http://www.silvaco.com

  49. Ortiz-Conde, A., Garcia-Sanchez, F.J., Malobabic, S.: Analytic solution of the channel potential in undoped symmetric dual-gate MOSFETs. IEEE Trans. Electron Devices 52(7), 1669–1672 (2005)

    Article  Google Scholar 

  50. Lundstrom, M.S., Ren, Z.: Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Devices 49, 133–141 (2002)

    Article  Google Scholar 

  51. Ionescu-Zanetti, C., Nevill, J.T., Di Carlo, D., Jeong, K.H., Lee, L.P.: Nanogap capacitors: sensitivity to sample permittivity changes. J. Appl. Phys. 99(2), 024305- (2006)

    Article  Google Scholar 

  52. Offenhäusser, A., Rinaldi, R.: Nanobioelectronics for Electronics, Biology, and Medicine. Springer-Verlag, New York (2009)

    Book  Google Scholar 

  53. Kinsella, J.M., Ivanisevic, A.: Biosensing: taking charge of biomolecules. Nat. Nanotechnol. 2(10), 596–597 (2007)

    Article  Google Scholar 

  54. Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Dielectric modulated tunnel field effect transistor—a biomolecule sensor. IEEE Electron Device Lett. 33(2), 266–268 (2012)

    Article  Google Scholar 

  55. Kang, H., Han, J.-W., Choi, Y.-K.: Analytical threshold voltage model for double-gate MOSFETs with localized charges. IEEE Electron Device Lett. 29(8), 92730 (2008)

    Article  Google Scholar 

  56. Dashiell, M.W., Kalambur, A.T., Leeson, R., Roe, K.J., Rabolt, J.F., Kolodzey, J.: The electrical effects of DNA as the gate electrode of MOS transistors. In: Proceedings of the IEEE Lester Eastman Conference, pp. 259–264 (2002)

  57. Busse, S., Scheumann, V., Menges, B., Mittler, S.: Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosens. Bioelectron. 17(8), 704–710 (2002)

    Article  Google Scholar 

  58. Densmore, A., Xu, D.-X., Janz, S., Waldron, P., Mischki, T., Lopinski, G., Delâge, A., Lapointe, J., Cheben, P., Lamontagne, B.: Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response. Opt. Lett. 33(6), 596–598 (2008)

    Article  Google Scholar 

  59. Makarona, E., Kapetanakis, E., Velessiotis, D., Douvas, A., Argitis, P., Normand, P., Gotszalk, T., Woszczyna, M., Glezos, N.: Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates. Microelectron. Eng. 85(5), 1399–1402 (2008)

    Article  Google Scholar 

  60. Kim, S., Baek, D., Kim, J.-Y., Choi, S.-J., Seol, M.-L., Choi, Y.-K.: A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 101(7), 073703 (2012)

    Article  Google Scholar 

  61. Kinsella, J.M., Ivanisevic, A.: Biosensing: taking charge of biomolecules. Nat. Nanotechnol. 2(10), 596–597 (2007)

    Article  Google Scholar 

  62. Jang, D.Y., Kim, Y.P., Kim, H.S., Park, S.H.K., Choi, S.Y., Choi, Y.K.: Sublithographic vertical gold nanogap for label-free electrical detection of protein-ligand binding. J. Vac. Sci. Technol. B 25(2), 443–447 (2007)

    Article  Google Scholar 

  63. Kim, S., Kim, J.Y., Ahn, J.H., Park, T.J., Lee, S.Y., Choi, Y.K.: A charge pumping technique to identify biomolecular charge polarity using a nanogap embedded biotransistor. Appl. Phys. Lett. 97, 053702 (2010)

    Article  Google Scholar 

  64. Singh, D., Pandey, S., Nigam, K., Sharma, D., Yadav, D.S., Kondekar, P.: A Charge-plasma-based dielectric-modulated junctionless TFET for biosensor label-free detection. IEEE Trans. Electron Devices 64(1), 271–278 (2017)

    Article  Google Scholar 

  65. Young, K.K.: Short-channel effects in fully depleted SOI MOSFET’s. IEEE Trans. Electron Devices 36, 399–402 (1989)

    Article  Google Scholar 

  66. Razavi , P., Orouji, A.A.: Dual material gate oxide stack symmetric double gate MOSFET: improving short channel effects of nanoscale double gate MOSFET, In: Electronics Conference, 2008. BEC 2008. 11th International Biennial Baltic, IEEE, pp. 83–86 (2008)

  67. Kang, H., Han, J.W., Choi, Y.K.: Analytical threshold voltage model for double-gate MOSFETs with localized charges. IEEE Electron Device Lett. 29(8), 927–930 (2008)

    Article  Google Scholar 

  68. Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-$ \(\backslash \) kappa $ gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)

    Article  Google Scholar 

  69. Sharma, A., Jain, A., Pratap, Y., Gupta, R.S.: Effect of high-k and vacuum dielectrics as gate stack on a junctionless cylindrical surrounding gate (JL-CSG) MOSFET. Solid State Electron. 123, 26–32 (2016)

    Article  Google Scholar 

  70. Rigante, S., Scarbolo, P., Wipf, M., Stoop, R.L., Bedner, K., Buitrago, E., Bazigos, A., et al.: Sensing with Advanced computing technology: fin field-effect transistors with high-k gate stack on bulk silicon. ACS Nano 9(5), 4872–4881 (2015)

    Article  Google Scholar 

  71. Yan, R., Lynch, D., Cayron, T., Lederer, D., Afzalian, A., Lee, C.-W., et al.: Sensitivity of trigate MOSFETs to random dopant induced threshold voltage fluctuations. Solid State Electron 52(12), 1872–1876 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angsuman Sarkar.

Appendices

Appendix-A

$$\begin{aligned} a_{11}= & {} \left( {-\frac{k_1 }{\lambda _1 }e^{\frac{L_2 -L_1 }{\lambda _1 }}-\frac{k_1 }{\lambda _1 }e^{\frac{L_1 -L_2 }{\lambda _1 }}} \right) -\left( {\frac{k_2 }{\lambda _2 }e^{\frac{L_2 -L_3 }{\lambda _2 }}-\frac{k_2 }{\lambda _2 }e^{\frac{L_3 -L_2 }{\lambda _2 }}} \right) ;\\ a_{12}= & {} {2k_2 }/{\lambda _2 }; \quad a_{21} ={2k_3 }/{\lambda _2 };\\ D_1= & {} -\frac{k_2 \Phi _{C2} }{\lambda _2 }e^{\frac{L_2 -L_3 }{\lambda _2 }}+\frac{2k_2 \Phi _{C2} }{\lambda _2 }-\frac{k_2 \Phi _{C2} }{\lambda _2 }e^{\frac{L_3 -L_2 }{\lambda _2 }} \\&-\frac{2k_1 V_1 }{\lambda _1 }+\frac{2k_1 \Phi _{C1} }{\lambda _1 }-\frac{k_1 \Phi _{C1} }{\lambda _1 }e^{\frac{L_2 -L_1 }{\lambda _1 }}-\frac{k_1 \Phi _{C1} }{\lambda _1 }e^{\frac{L_1 -L_2 }{\lambda _1 }}; \\ a_{22}= & {} \left( {\frac{-k_3 }{\lambda _2 }e^{\frac{L_3 -L_2 }{\lambda _2 }}-\frac{k_3 }{\lambda _2 }e^{\frac{L_2 -L_3 }{\lambda _2 }}} \right) -\left( {\frac{k_4 }{\lambda _3 }e^{\frac{L_3 -L_4 }{\lambda _3 }}-\frac{k_4 }{\lambda _3 }e^{\frac{L_4 -L_3 }{\lambda _3 }}} \right) ;\\ D_1= & {} -\frac{k_4 \Phi _{C3} }{\lambda _3 }e^{\frac{L_3 -L_4 }{\lambda _3 }}+\frac{2k_4 \Phi _{C3} }{\lambda _3 }\hbox { }-\frac{k_4 \Phi _{C3} }{\lambda _3 }e^{\frac{L_4 -L_3 }{\lambda _3 }} \\&-\frac{2k_4 V_4 }{\lambda _3 }+\frac{2k_3 \Phi _{C2} }{\lambda _2 }-\frac{k_3 \Phi _{C2} }{\lambda _2 }e^{\frac{L_3 -L_2 }{\lambda _2 }}-\frac{k_3 \Phi _{C2} }{\lambda _2 }e^{\frac{L_2 -L_3 }{\lambda _2 }};\\ \end{aligned}$$

Where

$$\begin{aligned} k_1= & {} 1/{e^{\frac{L_1 -L_2 }{\lambda _1 }}-e^{\frac{L_2 -L_1 }{\lambda _1 }}}; \quad k_2 =k_3 {=1}/{e^{\frac{L_2 -L_3 }{\lambda _2 }}-e^{\frac{L_3 -L_2 }{\lambda _2 }}};\\ k_4= & {} 1/{e^{\frac{L_3 -L_4 }{\lambda _3 }}-e^{\frac{L_4 -L_3 }{\lambda _3 }}}; \end{aligned}$$

Appendix-B

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., Sarkar, A. Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor. J Comput Electron 16, 556–567 (2017). https://doi.org/10.1007/s10825-017-0999-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-0999-2

Keywords

Navigation