Skip to main content
Log in

On the design methodology of Boolean functions with quantum-dot cellular automata for reducing delay and number of wire crossings

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) circuits are not based on transistors. Therefore, novel concepts and methodologies are required to be able to design Boolean functions in a systematic manner. Wire crossing is a problematic challenge in this technology, imposing considerable cost, complexity, and noise sensitivity. On the other hand, QCA circuits with multiple successive majority gates experience long delays. This paper deals with both problems. At first, some new diagrams are presented for the 13 standard functions, which are sufficient to represent all of the three-input Boolean functions. Some of the standard functions are designed with much fewer wire crossings in this paper compared with the previous designs. Then, with the aim of reducing delay, hierarchical multiplexers are merged together in order to generate wide Boolean functions with fewer layers of majority gates. Circuit compactness is based on some new merging rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965)

    Google Scholar 

  2. International Technology Roadmap for Semiconductors 2.0, 2015 edn. https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2015/0_2015%20ITRS%202.0%20Executive%20Report%20(1).pdf. Accessed Nov 2017

  3. Courtland, R.: Transistors could stop shrinking in 2021. IEEE Spectr. 53, 9–11 (2016)

    Google Scholar 

  4. Waldrop, M.M.: The chips are down for Moore’s law. Nature 530, 144–147 (2016)

    Article  Google Scholar 

  5. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  6. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541 (1997)

    Article  Google Scholar 

  7. Dehon, A., Wilson, M.J.: Nanowire-based sublithographic programmable logic arrays. In: Proceedings of International Symposium on Field-Programmable Gate Arrays, pp. 123–132 (2004)

  8. Seminario, J.M.: A molecular device operating at terahertz frequencies: theoretical simulations. IEEE Trans. Nanotechnol. 3, 368–376 (2004)

    Article  Google Scholar 

  9. Zhang, R., Gupta, P., Jha, N.K.: Majority and minority network synthesis with application to QCA-, SET-, and TPL-based nanotechnologies. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26, 1233–1245 (2007)

    Article  Google Scholar 

  10. Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    Article  MathSciNet  Google Scholar 

  11. Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14, 497–504 (2015)

    Article  Google Scholar 

  12. Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3, 443–450 (2004)

    Article  Google Scholar 

  13. Momenzadeh, M., Huang, J., Tahoori, M.B., Lombardi, F.: Characterization, test, and logic synthesis of And-Or-Inverter (AOI) gate design for QCA implementation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24, 1881–1893 (2005)

    Article  Google Scholar 

  14. Taherifard, M., Fathy, M.: Improving logic function synthesis, through wire crossing reduction in quantum-dot cellular automata layout. IET Circuits Dev. Syst. 9, 265–274 (2015)

    Article  Google Scholar 

  15. Sen, B. Sengupta, A., Dalui, M., Sikdar, B.K.: Design of testable universal logic gate targeting minimum wire-crossings in QCA logic circuit. In: 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools, pp. 613–620 (2010)

  16. Roohi, A., Menbari, B., Shahbazi, E., Kamrani, M.: A genetic algorithm based logic optimization for majority gate-based QCA circuits in nanoelectronics. Quantum Matter 2, 219–224 (2013)

    Article  Google Scholar 

  17. Wang, P., Niamat, M., Vemuru, S.: Minimal majority gate mapping of four-variable functions for quantum-dot cellular automata. In: Nanoelectronic Device Applications Handbook. CRC Press, Boca Raton, pp. 267–284 (2013)

  18. Singhal, R.: Logic realization using regular structures in quantum-dot cellular automata (QCA). Master’s Thesis, Portland State University, United States (2011)

  19. Shin, S.H., Jeon, J.C., Yoo, K.Y.: Wire-crossing technique on quantum-dot cellular automata. In: 2nd International Conference on Next Generation Computer and Information Technology, pp. 52–57 (2013)

  20. Liu, W., Swartzlander Jr., E.E., O’Neill, M.: Design of Semiconductor QCA Systems. Artech House, Norwood (2013)

    MATH  Google Scholar 

  21. Swartzlander Jr., E.E., Cho, H., Kong, I., Kim, S.W.: Computer arithmetic implemented with QCA: a progress report. In: 44th Asilomar Conference on Signals, Systems and Computers, pp. 1392–1398 (2010)

  22. Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: QCA circuits for robust coplanar crossing. J. Electron. Test. 23, 193–210 (2007)

    Article  Google Scholar 

  23. Janez, M., Pecar, P., Mraz, M.: Layout design of manufacturable quantum-dot cellular automata. Microelectron. J. 43, 501–513 (2012)

    Article  Google Scholar 

  24. Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52, 464–466 (2016)

    Article  Google Scholar 

  25. Roohi, A., Zand, R., Angizi, S., DeMara, R.F.: A parity-preserving reversible QCA gate with self-checking cascadable resiliency. In: IEEE Transactions on Emerging Topics in Computing, pp. 1–10 (2016)

  26. Bararzadeh, M., Mohammadyan, S., Navi, K., Bagherzadeh, N.: A novel low-power Exclusive-OR via cell level-based design function in quantum cellular automata. J. Comput. Electron. 1–8 (2017)

  27. QCADesigner. https://waluslab.ece.ubc.ca/qcadesigner/. Accessed Nov 2017

  28. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)

    Article  Google Scholar 

  29. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro: an error-power estimation tool for QCA circuit design. In: IEEE International Symposium on Circuits and Systems, pp. 2377–2380 (2011)

  30. Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7, 1546–1553 (2010)

    Article  Google Scholar 

  31. Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41, 820–826 (2010)

    Article  Google Scholar 

  32. Akeela, R., Wagh, M.D.: A five-input majority gate in quantum-dot cellular automata. NSTI Nanotechnol. 2, 13–16 (2011)

    Google Scholar 

  33. Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46, 43–51 (2015)

    Article  Google Scholar 

  34. Orlov, A., Amlani, I., Toth, G., Lent, C., Bernstein, G., Snider, G.: Experimental demonstration of a binary wire for quantum-dot cellular automata. Appl. Phys. Lett. 74, 2875–2877 (1999)

    Article  Google Scholar 

  35. Liu, W., Lu, L., O’Neill, M., Swartzlander Jr., E.E.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13, 476–487 (2014)

    Article  Google Scholar 

  36. Akers, S.B.: A rectangular logic array. IEEE Trans. Comput. C-21, 848–857 (1972)

    Article  Google Scholar 

  37. Navi, K., Chabi, A.M., Sayedsalehi, S.: A novel seven input majority gate in quantum-dot cellular automata. Int. J. Comput. Sci. Issues 9, 84–89 (2012)

    Google Scholar 

  38. Amaru, L., Gaillardon, P.E., Chattopadhyay, A., De Micheli, G.: A sound and complete axiomatization of majority-n logic. IEEE Trans. Comput. 65, 2889–2895 (2016)

    Article  MathSciNet  Google Scholar 

  39. Chattopadhyay, A., Amaru, L., Soeken, M., Gaillardon, P.E., De Micheli, G.: Notes on majority Boolean algebra. In: IEEE 46th International Symposium on Multiple-Valued Logic, pp. 50–55 (2016)

  40. Amaru, L., Gaillardon, P.E., De Micheli, G.: Majority-inverter graph: a new paradigm for logic optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 806–819 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Faghih Mirzaee.

Appendix

Appendix

See Fig. 9.

Fig. 9
figure 9figure 9figure 9

The proposed circuit layouts and thermal hotspot maps for the 13 standard functions, a Function 1, b Function 2, c Function 3, d Function 4, e Function 5, f Function 6, g Function 7, h Function 8, i Function 9, j Function 10, k Function 11, l Function 12, m Function 13

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, M., Faghih Mirzaee, R. & Pishgar Komleh, S.H. On the design methodology of Boolean functions with quantum-dot cellular automata for reducing delay and number of wire crossings. J Comput Electron 17, 1756–1770 (2018). https://doi.org/10.1007/s10825-018-1219-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1219-4

Keywords

Navigation