Skip to main content

Advertisement

Log in

Reduction of electromagnetic interference in HF circuits by improving the effectiveness of shielding structures

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Because of the substantial development of electronics and telecommunication technologies, materials that exhibit good electromagnetic interference shielding performance are important for alleviating the impact of interference induced by a remarkable variety of devices. There is thus currently great research interest in enhancing simulation tools and developing new techniques to protect electronic installations against such electromagnetic coupling. However, various numerical methods that are used to treat such electromagnetic problems are rapidly reaching their limits in terms of central processing unit (CPU) time and memory storage requirements. We therefore propose herein use of the method of moments (MoM)–generalized equivalent circuit (GEC) approach based on the wave concept as a convenient simulation tool to study structures designed for such shielding applications, considering the cases of both perfect and lossy metallic shielding surfaces. The shielding efficiency is optimized for each case based on a parametric study of structural parameters. We then numerically study the effect of the type of material used to introduce losses for shielding, modeled based on the surface impedance \({Z_\mathrm{s}}\). The numerical results are validated against other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Biwojno, K., Sewell, P., Liu, Y., Christopoulos, C.: Electromagnetic modelling of fine features in photonic applications. Opt. Quant. Electron. 38, 187201 (2006). https://doi.org/10.1007/s11082-006-0003-z

    Article  Google Scholar 

  2. Podlozny, V., Christopoulos, C., Paul, J.: Efficient description of fine features using digital filters in time-domain computational electromagnetics. IET Sci. Meas. Technol. 5, 254257 (2002). https://doi.org/10.1049/ip-smt:20020541

    Article  Google Scholar 

  3. Meng, X., Vukovic, A., Benson, T.M., Sewell, P.: Extended capability models for carbon fiber composite (CFC) panels in the unstructured transmission line modeling (UTLM) method. IEEE Trans. Electromagn. Compat. 58(3), 811819 (2016). https://doi.org/10.1109/TEMC.2016.2531791

    Article  Google Scholar 

  4. LI, M., NUEBEL, J., DREWNIAK, J.L., HUBING, T.H., DUBROFF, R.E., VAN DOREN, T.P.: EMI from cavity modes of shielding enclosures FDTD modeling and measurements. IEEE Trans. Electromagn. Compat. 42(1), 2938 (2000). https://doi.org/10.1109/15.831702

    Article  Google Scholar 

  5. Liu, Z., Li, Y., Pan, Z., Su, Y., Wang, X.: FDTD computation of shielding effectiveness of electromagnetic shielding fabric based on weave region. J. Electromagn. Waves Appl. 31, 1–14 (2017). https://doi.org/10.1080/09205071.2016.1277957

    Article  Google Scholar 

  6. Lebaric, J.E., Kajfez, D.: Analysis of dielectric resonator cavities using the finite integration technique. IEEE Trans. Microw. Theory Tech. 37(11), 1740 (1989). https://doi.org/10.1109/22.41039

    Article  Google Scholar 

  7. Benhassine, S., Pinchon, L., Tabbara, W.: An efficient finite-element time-domain method for the analysis of the coupling between wave and shielded enclosure. IEEE Trans. Magn. 38(2), 709712 (2002). https://doi.org/10.1109/20.996184

    Article  Google Scholar 

  8. Araneo, R., Lovat, G.: Fast MoM analysis of the shielding effectiveness of rectangular enclosures with apertures, metal plates, and conducting objects. IEEE Trans. Electromagn. Compat. 51(2), 274283 (2009). https://doi.org/10.1109/TEMC.2008.2010456

    Article  Google Scholar 

  9. Cerri, G., De Leo, R., Mariani, V., Russo, P., Tribellini, G.: Development of a hybrid MOMTD/FDTD technique for EMC problems: analysis of the coupling between ESD transient fields and slotted enclosures. Int. J. Numer. Modell.: Electron. Netw. Dev. Fields. 12(16), 245 (1999). https://doi.org/10.1002/(SICI)1099-1204(199907/08)12:4<245::AID-JNM328>3.0.CO;2-V

    Article  Google Scholar 

  10. Nouainia, A., Hajji, H., Aguili, T.: Wave concept in MoM -GEC formalism. In: ACES conference (2017). https://doi.org/10.23919/ROPACES.2017.7916331

  11. Nouainia, A., Hajji, H., Aguili, T.: Application of the new formulation of the MoM-GEC method based on wave concept for study of electromagnetic diffraction: shielding applications. Int. J. Microw. Opt. Technol. 12, 323–330 (2017)

    Google Scholar 

  12. Baudrand, H., Bajon, D.: Equivalent circuit representation for integral formulations of electromagnetic problems. Int. J. Numer. Modell. Electron. Netw. Dev. Fields 15, 23 (2002)

    Article  Google Scholar 

  13. Aubert, H., Baudrand, H.: Electromagnetism by Equivalent Circuits. Editions Cepadues, Toulouse (2003)

    Google Scholar 

  14. Mili, S., Aguili, T.: Electromagnetic study of planar pre-fractal structures using the scale changing technique. In: IEEE 18th international conference, Vilnius-Lithuania. Microwave radar and wireless communications (MIKON) (2010)

  15. Aguili, Chiraz Larbi, Salah, Taha Ben, Aguili, Taoufik, Bouallegue, Ammar, Baudrand, Henri: Study of electromagnetic waves diffraction by bi-dimensional fractal structures using the renormalization method. Int. J. Electron. Commun. 63(9), 720727 (2009). https://doi.org/10.1016/j.aeue.2008.05.013

    Article  Google Scholar 

  16. Baudrand.: The Wave concept in electromagnetic problems: application in integral methods. In: Asia pacific microwave conference APMC’96, pp. 17–20, New Delhi (1996)

  17. Sievenpiper, D., Zhang, L., Broas, R.F.J., Alexopolous, N.G., Yablonovitch, E.: High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47(11), 2059 (1999). https://doi.org/10.1109/22.798001

    Article  Google Scholar 

  18. Chung, D.D.L.: Materials for Electromagnetic Interference Shielding. J. Mater. Eng. Perform. 9(3), 350354 (2000). https://doi.org/10.1361/105994900770346042

    Article  Google Scholar 

  19. Paul, Clayton R., Chang, Kai: Introduction to Electromagnetic Compatibility, 2nd edn. Wiley, Hoboken (2006). https://doi.org/10.1002/0471758159

    Book  Google Scholar 

  20. Mili, S.: Approche des Circuits Equivalents Generalises Multi-Echelles Combinees a la Theorie de Groupe de Renormalisation pour la Modelisation Electromagnetique des Structures Fractales Passives et Actives [Approach of multi scale generalized equivalent circuits combined to the renormalization group theory for electromagnetic modeling of passive and active fractal structures] [Ph.D. thesis]. Tunis: National Engineering School of Tunis ENIT (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Nouainia.

Appendix

Appendix

See Table 2.

Table 2 Relative permeability and relative conductivity of typical materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouainia, A., Hajji, M. & Aguili, T. Reduction of electromagnetic interference in HF circuits by improving the effectiveness of shielding structures. J Comput Electron 17, 1709–1720 (2018). https://doi.org/10.1007/s10825-018-1216-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1216-7

Keywords

Navigation