Skip to main content
Log in

Novel design for a memristor-based full adder using a new IMPLY logic approach

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents and evaluates a novel approach based on material implementation to improve the performance of a 1-bit memristor-based full adder. In addition, two new efficient architectures are presented and evaluated for an 8-bit memristor-based full adder, serial memristor-based full adder and parallel-serial memristor-based full adder. Using the proposed approach, the number of required steps to accumulate the sum and carry-out in the proposed serial and parallel-serial 8-bit memristor-based full adder architectures is 168 and 56, respectively. Moreover, the number of required memristors in the proposed serial and parallel-serial memristor-based full adder architectures is 19 and 33, respectively. The evaluation results show that both delay and density are improved in the proposed architectures compared to other memristor-based full adder architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Karimi, A., Rezai, A., Hajhashemkhani, M.M.: A novel design for ultra-low power pulse-triggered D-Flip-Flop with optimized leakage power. Integr. VLSI J. 60(1), 160–166 (2018)

    Article  Google Scholar 

  2. Rashidi, H., Rezai, A., Soltani, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)

    Article  Google Scholar 

  3. Karimi, A., Rezai, A.: A design methodology to optimize the device performance in CNTFET. ECS J. Solid State Sci. Technol. 6(8), 97–102 (2017)

    Article  Google Scholar 

  4. Colinge, J.P.: Multiple-gate SOI MOSFETs. Solid State Electron. 48(6), 897–905 (2004)

    Article  Google Scholar 

  5. Amirsoleimani, A., Ahmadi, M., Ahmadi, A.: Logic design on mirrored memristive crossbars. IEEE Trans. Circuits Syst. II Express Briefs (2017). https://doi.org/10.1109/TCSII.2017.2729499

  6. Nguyen, V.H., Sohn, K.Y., Song, H.: On-printed circuit board emulator with controllability of pinched hysteresis loop for nanoscale \(\text{ TiO }_{2}\) thin-film memristor device. J. Comput. Electron. 15(3), 993–1002 (2016)

    Article  Google Scholar 

  7. Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: MAGIC-memristor aided logic. IEEE Trans. Circuits Syst. II Express Briefs 61(11), 895–899 (2014)

    Article  Google Scholar 

  8. Strukov, D.B., Stewart, D.R., Borghetti, J., Li, X., Pickett, M., Medeiros-Ribeiro, G., Robinett, W., Snider, G., Strachan, J.P., Wu, W., Xia, Q., JoshuaYang, J., Williams, R.S.: Hybrid CMOS/memristor circuits. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’10), pp. 1967–1970 (2010)

  9. Kvatinsky, S., Wald, N., Satat, G., Friedman, E.G., Kolodny, A., Weiser, U.C.: Memristor-based material implication (IMPLY) logic: design principles and methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(10), 2054–2066 (2013)

    Article  Google Scholar 

  10. Ho, Y., Huang, G., Li, P.: Dynamical properties and design analysis for nonvolatile memristor memories. IEEE Trans. Circuits Syst. I Regul. Pap. 58(4), 724–736 (2011)

    Article  MathSciNet  Google Scholar 

  11. Shang, Y., Fei, W., Yu, H.: Analysis and modeling of internal state variables for dynamic effects of nonvolatile memory devices. IEEE Trans. Circuits Syst. I Regul. Pap. 59(9), 1906–1918 (2012)

    Article  MathSciNet  Google Scholar 

  12. Vijay, H.M., Ramakrishnan, V.N.: Radiation effects on memristor-based non-volatile SRAM cells. J. Comput. Electron. (2017). https://doi.org/10.1007/s10825-017-1080-x

    Google Scholar 

  13. Liu, K.C., Tzeng, W.H., Chang, K.M., Chan, Y.C., Kuo, C.C., Cheng, C.W.: The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device. Microelectron. Reliab. 50(5), 670–673 (2010)

    Article  Google Scholar 

  14. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Memristives witches enable stateful logic operations via material implication. Nature 464, 873–876 (2010)

    Article  Google Scholar 

  15. Shaltoot, A.H., Madian, A.H.: Memristor based carry look ahead adder architectures. In: Proceedings of the IEEE International Mid-west Symposium on Circuits and Systems (MWSCAS’12), pp. 298–301 (2012)

  16. Lehtonen, E., Laiho, M.: Stateful implication logic with memristors. In: Proceedings of the 2009 IEEE/ACM International Symposium on Nanoscale Architectures, pp. 33–36. IEEE Computer Society (2009)

  17. Wang, X., Deng, H., Feng, W., Yang, u., Chen, K.: Memristor-based XOR gate for full adder. In: 35th Chinese Control Conference (CCC), pp. 5847–5851 (2016)

  18. Guckert, L., Swartzlander, E.E., Jun, Y.: Optimized memristor-based multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 64(2), 373–385 (2017)

    Article  Google Scholar 

  19. Revanna, N., Swartzlander, E.E.: Memristor based high fan-out logic gates. In: IEEE Dallas Circuits and Systems Conference (DCAS) (Oct. 2016). https://doi.org/10.1109/DCAS.2016.7791136

  20. Guckert, L., Swartzlander, E.E.: Optimized memristor-based ripple carry adders. In: 50th Asilomar Conference on Signals, Systems and Computers (2016). https://doi.org/10.1109/ACSSC.2016.7869644

  21. Wang, X., Yang, R., Chen, Q., Zeng, Zh.: An improved memristor-CMOS XOR logic gate and a novel full adder. In: Ninth International Conference on Advanced Computational Intelligence (ICACI). IEEE (Feb. 2017). https://doi.org/10.1109/ICACI.2017.7974477

  22. Rohani, S.G., TaheriNejad, N.: An improved algorithm for IMPLY logic based memristive full-adder. In: IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), (2017). https://doi.org/10.1109/CCECE.2017.7946813

  23. Teimoory, M., Amirsoleimani, A., Shamsi, J., Ahmadi, A., Alirezaee, S., Ahmadi, M.: Optimized implementation of memristor-based full adder by material implication logic. In: 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 562–565 (2014)

  24. Teimoory, M., Amirsoleimani, A., Ahmadi A., Alirezaee, S., Salimpour, S., Ahmadi, M.: Memristor-based linear feedback shift register based on material implication logic. In: Circuit Theory and Design (ECCTD) European Conference on IEEE, pp. 1–4 (2015)

  25. Bickerstaff, K., Swartzlander, E.E.: Memristor-based arithmetic. In: Proceedings of the IEEE Conference on Asilomar Signals, Systems and Computers (ASILO-MAR’10), pp. 1173–1177 (2010)

  26. Shaltoot, A.H., Madian, A.H.: Memristor-based modified recoded-multiplicand systolic serial-parallel multiplier. In: Proceedings of the IEEE International Conference on Communications, Signal Processing, and their Applications (ICCSPA’13), pp. 1–5 (2013)

  27. Shin, S., Kim, K., Kang, S.M.: Reconfigurable stateful NOR gate for large-scale logic-array integrations. IEEE Trans. Circuits Syst. II Express Briefs 58(7), 442–446 (2011)

    Article  Google Scholar 

  28. Shin, S., Kim, K., Kang, S.M.: Field programmable stateful logic array. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(12), 1800–1813 (2011)

    Article  MathSciNet  Google Scholar 

  29. Shin, S., Kim, K., Kang, S.M.: Resistive computing: Memristors-enabled signal multiplication. IEEE Trans. Circuits Syst. I Regul. Pap. 60(5), 1241–1249 (2013)

    Article  MathSciNet  Google Scholar 

  30. Owlia, H., Keshavarzi, P., Rezai, A.: A novel digital logic implementation approach on nanocrossbar arrays using memristor-based multiplexers. Microelectron. J. 45, 597–603 (2014)

    Article  Google Scholar 

  31. Backus, J.: Can programming beliberated from the von Neumann style? A functional style and its algebra of programs. Commun. ACM 21(8), 613–641 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Strukov, D.B., Likharev, K.K.: Reconfigurable nano-crossbar architectures. In: Waser, R. (ed.) Nanoelectronics and Information Technology, pp. 435–454. Wiley, Weinheim (2012)

    Google Scholar 

  33. Chen, Q., Wang, X., Wan, H., Yang, R.: A logic circuit design for perfecting memristor-based material implication. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(2), 279–284 (2017)

    Article  Google Scholar 

  34. Wang, X., Wu, Q., Chen, Q., Zeng, Z.: A novel design for Memristor-based multiplexer via NOT-material implication. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2017). https://doi.org/10.1109/TCAD.2017.2753204

  35. Torrezan, A.C., Strachan, J.P., Medeiros-Ribeiro, G., Williams, R.S.: Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Karimi or Abdalhossein Rezai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, A., Rezai, A. Novel design for a memristor-based full adder using a new IMPLY logic approach. J Comput Electron 17, 1303–1314 (2018). https://doi.org/10.1007/s10825-018-1198-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1198-5

Keywords

Navigation