Skip to main content
Log in

A novel model for graphene-based ion-sensitive field-effect transistor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Graphene field-effect transistors (GFETs) are a promising candidate for sensing applications because of their high charge carrier mobility, high flexibility, biocompatibility and the ideal coupling between graphene charge carriers and surface potential. Coating graphene with sensing membrane fabricated high-k materials that can be used to pH sensing in aqueous solutions. This work presents the development of an analytical model for GFET-based pH sensor. This model can help in the investigation of the sensitivity mechanism related to the ambipolar characteristic of the GFET and theory of site binding and a Gouy–Chapman–Stern model. Finally, simulation results are compared with those extracted from experimental measurements and a good agreement is observed which validates the proposed analytical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nature 6, 183 (2007)

    Article  Google Scholar 

  2. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351–355 (2008)

    Article  Google Scholar 

  3. Wang, X., Zhi, L., Mullen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008)

    Article  Google Scholar 

  4. Ang, P.K., Chen, W., Wee, A.T., Loh, K.P.: Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392 (2008)

    Article  Google Scholar 

  5. Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L.: Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654 (2008)

    Article  Google Scholar 

  6. Ang, P.K., Chen, W., Wee, A.T.S., Loh, K.P.: Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392–14393 (2008)

    Article  Google Scholar 

  7. Her, J.L., Pan, T.M., Lin, W.Y., Wang, K.S., Li, L.J.: Label-free detection of alanine aminotransferase using a graphene field-effect biosensor. Sens. Actuators B 182, 396 (2013)

    Article  Google Scholar 

  8. Heller, I., Chatoor, S., Mannik, J., Zevenbergen, M.A.G., Dekker, C., Lemay, S.G.: Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J. Am. Chem. Soc. 132, 17149 (2010)

    Article  Google Scholar 

  9. Fu, W., Nef, C., Knopfmacher, O., Tarasov, A., Weiss, M., Calame, M., Schönenberger, C.: Graphene transistors are insensitive to pH changes in solution. Nano Lett. 11, 3597–3600 (2011)

    Article  Google Scholar 

  10. Noguera, C.: Physics and Chemistry at Oxide Surfaces. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  11. Jang, H.-J., Cho, W.-J.: Fabrication of high performance ion-sensitive field-effect transistors using an engineered sensing membrane for bio-sensor application. Jpn. J. Appl. Phys. 51, 02BL05 (2012)

    Article  Google Scholar 

  12. Tiwari, S.P., Zhang, X.H., Potscavage, W.J., Kippelen, B.: Low-voltage solution-processed n-channel organic field-effect transistors with high-k HfO\(_2\) gate dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 95, 223303 (2009)

    Article  Google Scholar 

  13. Oh, J.Y., Jang, H.-J., Cho, W.-J., Islam, M.S.: Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al\(_2\) O\(_3\)/SiO\(_2\) sensing membrane. Sens. Actuators B 171–172, 238 (2012)

    Article  Google Scholar 

  14. Kiani, et al.: Analytical modelling of monolayer graphene-based ion-sensitive FET to pH changes. Nanoscale Res. Lett. 8, 173 (2013)

    Article  Google Scholar 

  15. Yates, D.E., Levine, S., Healy, T.W.: Journal of the Chemical Society. Faraday Trans. I 70, 1807 (1974)

    Article  Google Scholar 

  16. Siu, W., Cobbold, R.: Basic properties of the electrolyte—SiO\(_2\)—Si system: physical and theoretical aspects. IEEE Trans. Electron Devices 26, 1805–1815 (1979)

    Article  Google Scholar 

  17. Chen, S., Bomer, J.G., Carlen, E.T., van den Berg, A.: Al\(_2\)O\(_3\)/silicon nanoISFET with near ideal Nernstian response. Nano Lett. 11, 2334–2341 (2011)

    Article  Google Scholar 

  18. van Hal, R., Eijkel, J., Bergveld, P.: A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv. Colloid Interface Sci. 69, 31–62 (1996)

    Article  Google Scholar 

  19. Tarasov, A., Wipf, M., Bedner, K., Kurz, J., Fu, W., Guzenko, V.A., Knopfmacher, O., Stoop, R.L., Calame, M., Schönenberger, C.: True reference nanosensor realized with silicon nanowires. Langmuir 28, 9899–9905 (2012)

    Article  Google Scholar 

  20. Khakifirooz, A., Nayfeh, O.M., Antoniadis, D.: A simple semiempirical short-channel MOSFET current-voltage model continuous across all regions of operation and employing only physical parameters. IEEE Trans. Electron Devices 56(8), 1674–1680 (2009)

    Article  Google Scholar 

  21. Rakheja, S., Wu, Y., Wang, H., Palacios, T.: An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors. IEEE Trans. Nanotechnol. 13(5), 1005–1013 (2014)

    Article  Google Scholar 

  22. Massobrio, G., Grattarola, M., Mattioli, G., Mattioli, J.: ISFET-based biosensor modeling with SPICE. Sens. Actuators B Chem. 1(1–6), 401–407 (1990)

    Article  Google Scholar 

  23. Moriconi, L., Niemeyer, D.: Graphene conductivity near the charge neutral point. Phys. Rev. B 84(19), 193401 (2011)

  24. Van Hal, R.E.G., Eijkel, J.C.T., Bergveld, P.: A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sens. Actuators 25, 201–205 (1995)

    Google Scholar 

  25. Shepherda*, L., Toumazoub, C.: Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis. Sens. Actuators B 1, 468–473 (2005)

    Article  Google Scholar 

  26. van Hal, R., Eijkel, J., Bergveld, P.: A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key, parameters. Sens. Actuators B 24, 201–205 (1995)

    Article  Google Scholar 

  27. Fu, W., Nef, C., Tarasov, A., Wipf, R.S.M., Knopfmacher, O., Weiss, M., Calame, M., Schonenberger, C.: High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 5, 12104 (2013)

    Article  Google Scholar 

  28. van Hal*, R.E.G., Eijkel, J.C.T., Bergveld, P.: A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv. Colloid Interface Sci. 68, 31–62 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Scientific Research Deanship (SRD), Jazan University, Saudi Arabia, for fully funding this work under the Grant Number 37/7/00116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montasar Najari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Grour, T., Najari, M. & El-Mir, L. A novel model for graphene-based ion-sensitive field-effect transistor. J Comput Electron 17, 297–303 (2018). https://doi.org/10.1007/s10825-017-1068-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1068-6

Keywords

Navigation