Skip to main content
Log in

Introduction of a metal strip in oxide region of junctionless tunnel field-effect transistor to improve DC and RF performance

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Achieving steeper subthreshold slope and high ON–OFF current ratio (\(I_{\mathrm{ON}}/I_{\mathrm{OFF}}\)) is essential for use of semiconductor devices in switching applications. It is well known that tunnel field-effect transistors face serious issues related to low ON-state current and poor radio frequency (RF) response. We report herein a unique method for realizing a sharp tunneling junction in a charge plasma-based junctionless tunnel field-effect transistor by embedding a metal strip in the oxide region near to the source–channel connection. This modulates the carrier concentration profile at the source–channel interface, making it abrupt. This steeper source–channel tunneling junction results in a reduced tunneling barrier and increased flow of charge carriers at the junction. Furthermore, electron transfer along the channel is accounted for using postprocessing based on the drift–diffusion equations as well as the band-to-band tunneling current. This phenomenon contributes to the improved direct-current (DC) characteristics of the device. Selection of a metal with an appropriate work function for the strip can improve the subthreshold swing and threshold voltage (\(V_{\mathrm{th}}\)) of the device. The increased charge carrier tunneling rate at the junction also results in a huge improvement in RF parameters of the device, including cutoff frequency (\(f_{T}\)), gain–bandwidth product, and transit time (\(\tau \)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sahu, P.K., Mohapatra, S.K., Pradhan, K.P.: Impact of downscaling on analog/RF performance of sub-100 nm GS-DG MOSFET. J. Microelectr. Electr. Compon. Mater. 44(2), 119–125 (2014)

    Google Scholar 

  2. Kilchytska, V., Neve, A., Vancaillie, L., Levacq, D., Adriaensen, S., Meer, H.V., Meyer, K.D., Raynaud, C., Dehan, M., Raskin, M.J.P., Flandre, D.: Influence of device engineering on the analog and RF performances of SOI MOSFETs. IEEE Trans. Electron Devices 50(3), 577–588 (2003)

    Article  Google Scholar 

  3. Sharma, R.K., Bucher, M.: Device design engineering for optimum analog/RF performance of nanoscale DG MOSFETs. IEEE Trans. Nanotechnol. 11(5), 992–998 (2012)

    Article  Google Scholar 

  4. Woerlee, P.H., Knitel, M.J., van Langevelde, R., Klaassen, D.B.M., Tiemeijer, L.F., Scholten, A.J., Zegers-van Duijnhoven, A.T.A.: RFCMOS performance trends. IEEE Trans. Electron Devices 48(8), 1776–1782 (2001)

    Article  Google Scholar 

  5. Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.-S.P.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259–288 (2001)

    Article  Google Scholar 

  6. Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K.: Tunneling field-effect transistor (TFETs) with subthreshold swing (SS) less than 60 mV/Dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)

    Article  Google Scholar 

  7. Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Trans. Electron Device Lett. 27(4), 297–300 (2006)

    Article  Google Scholar 

  8. Boucart, K., Ionescu, A.M.: Double gate tunnel FET with high \(\kappa \) gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)

    Article  Google Scholar 

  9. Seabaugh, A.C., Zhang, Q.: Low voltage tunnel transistor beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  10. Raad, B.R., Nigam, K., Sharma, D., Kondekar, P.N.: Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement. Superlattice Microstruct. 94(6), 138–146 (2016)

    Article  Google Scholar 

  11. Beneventi, G.B., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Dual-metal gate InAs tunnel FET wit h enhanced turn on steepness and high ON-current. IEEE Trans. Electron Devices 61(3), 776–784 (2014)

    Article  Google Scholar 

  12. Yadav, D.S., Sharma, D., Raad, B.R., Bajaj, V.: Impactful study of dual work function, underlap and hetero gate dielectric on TFET with different drain doping profile for high frequency performance estimation and optimization. Superlattice Microstruct. 96, 36–46 (2016)

    Article  Google Scholar 

  13. Gundapaneni, S., Bajaj, M., Pandey, R.K., Murali, K.V.R., Ganguly, S., Kottantharayil, A.: Effect of band-to-band tunnelling on junctionless transistors. IEEE Trans. Electron Devices 59(4), 1023–1029 (2012)

    Article  Google Scholar 

  14. Bashir, F., Loan, S.A., Rafat, M., Alamoud, M.R.M., Abbasi, S.A.: A high performance gate engineered charge plasma based tunnel field effect transistor. J. Comput. Electron. 14, 477–485 (2015)

    Article  Google Scholar 

  15. Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)

    Article  Google Scholar 

  16. Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)

    Article  Google Scholar 

  17. Vijayvargiya, V., Vishvakarma, S.K.: Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans. Nanotechnol. 13(5), 974–981 (2014)

    Article  Google Scholar 

  18. Kumar, S., Goel, E., Singh, K., Singh, B., Kumar, M., Jit, S.: A compact 2-D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a \(SiO_{2}\)/high-k stacked gate-oxide structure. IEEE Trans. Electron Device 63(8), 3291–3299 (2016)

    Article  Google Scholar 

  19. Ranade, P., Takeuchi, H., King, T.-J., Hu, C.: Work function engineering of molybdenum gate electrodes by nitrogen implantation. Electrochem. Solid State Lett. 4(11), G85–G87 (2001)

    Article  Google Scholar 

  20. Lin, R., Lu, Q., Ranade, P., King, T.-J., Hu, C.: An adjustable work function technology using Mo gate for CMOS devices. IEEE Electron Device Lett. 23(1), 49–51 (2002)

    Article  Google Scholar 

  21. Kumar, M., Haldar, S., Gupta, M., Gupta, R.S.: Impact of gate material engineering (GME) on analog/RF performance of nanowire Schottky-barrier gate all around (GAA) MOSFET for low power wireless applications: 3D T-CAD simulation. Microelectron. J. 45(11), 1508–1514 (2014)

    Article  Google Scholar 

  22. Polishchuk, I., Ranade, Pushkar, King, Tsu-Jae, Hu, Chenming: Dual work function metal gate CMOS technology using metal interdiffusion. IEEE Electron Device Lett. 22(9), 444–446 (2001)

    Article  Google Scholar 

  23. Silvaco Int.,“ATLAS Device Simulation Software,” Santa Clara, CA, USA (2014)

  24. Hansch, W., Vogelsang, T., Kirchner, R., Orlowski, M.: Carrier transport near the Si/Sio2 interface of a MOSFET. Solid State Electron 32(10), 839–849 (1989)

    Article  Google Scholar 

  25. Schenk, A.: A model for the field and temperature dependence of SRH lifetimes in silicon. Solid State Electron 35(11), 1585–1596 (1992)

    Article  Google Scholar 

  26. Nigam, K., Kondekar, P., Sharma, D.: High frequency performance of dual metal gate vertical tunnel field effect transistor based on work function engineering. IET Micro Nano Lett. 11(6), 319–322 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Science and Engineering Research Board, Department of science and technology, Government of India (established through an act of parliament) for providing the financial support to carry out this work. As this work has been implemented under the project “Implementation of Sigma Delta Modulator Using Nanowire Electrically Doped Hetero Material Tunnel Field Effect Transistor (TFET) for Ultra Low Power Applications” which is funded by this board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukeshni Tirkey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirkey, S., Sharma, D., Raad, B.R. et al. Introduction of a metal strip in oxide region of junctionless tunnel field-effect transistor to improve DC and RF performance. J Comput Electron 16, 714–720 (2017). https://doi.org/10.1007/s10825-017-1032-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1032-5

Keywords

Navigation