Journal of Computational Electronics

, Volume 16, Issue 1, pp 127–132 | Cite as

Computational study of transport properties of graphene upon adsorption of an amino acid: importance of including –\(\hbox {NH}_{2}\) and –COOH groups

  • S. J. Rodríguez
  • L. Makinistian
  • E. Albanesi


The effects of histidine and its imidazole ring adsorption on the electronic transport properties of graphene were investigated by first-principles calculations within a combination of density functional theory and non-equilibrium Greens functions. Firstly, we report adsorption energies, adsorption distances, and equilibrium geometrical configurations with no bias voltage applied. Secondly, we model a device for the transport properties study: a central scattering region consisting of a finite graphene sheet with the adsorbed molecule sandwiched between semi-infinite source (left) and drain (right) graphene electrode regions. The electronic density, electrical current, and electronic transmission were calculated as a function of an applied bias voltage. Studying the adsorption of the two systems, i.e., the histidine and its imidazole ring, allowed us to evaluate the importance of including the carboxyl (–COOH) and amine (–\(\hbox {NH}_{2}\)) groups. We found that the histidine and the imidazole ring affects differently the electronic transport through the graphene sheet, posing the possibility of graphene-based sensors with an interesting sensibility and specificity.


Adsorption amino acid Graphene NEGF 



The authors acknowledge financial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), through grants PIP 11220150100124CO (S.J.R. and E.A.A.) and 112-201101-00615 (L.M.). Also, L.M. and E.A.A. acknowledge financial support from the Universidad Nacional de San Luis (PROICO 3-10314), and the Universidad Nacional de Entre Ríos, respectively.


  1. 1.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  2. 2.
    Ferrari, A.C.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 112, 1–343 (2014)Google Scholar
  3. 3.
    Baraket, M., Stine, R., Lee, S., Robinson, J., Tamanaha, C.R., Sheehab, P.E., Walton, S.G.: Aminated graphene for DNA attachment produced via plasma functionalization. Appl. Phys. Lett. 100, 233123 (2012)CrossRefGoogle Scholar
  4. 4.
    Huang, B., Li, Z., Liu, Z., Zhou, G., Hao, S., Wu, J., Gu, B.L., Duan, W.: Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J. Phys. Chem. C 112, 13442–13446 (2008)CrossRefGoogle Scholar
  5. 5.
    Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, S.: Functionalization of graphene: covalent and non-covalent approaches, derivates and applications. Chem. Rev. 1, 1–58 (2012)Google Scholar
  6. 6.
    Milowska, K., Majewski, J.: Graphene-based sensors: theoretical study. J. Phys. Chem. C 118, 17395–17401 (2014)CrossRefGoogle Scholar
  7. 7.
    Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y.: Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027–1036 (2010)CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Yu, D., Zeng, C., Miao, Z., Dail, L.: Biocompatible graphene oxide-based glucose biosensors. Langmuir 26, 6158–6160 (2010)CrossRefGoogle Scholar
  9. 9.
    Yang, K., Feng, L., Shi, X., Liu, Z.: Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 42, 530–547 (2013)CrossRefGoogle Scholar
  10. 10.
    Nelson, T., Zhang, B., Prezhdo, O.: Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett. 10, 3237–3242 (2010)CrossRefGoogle Scholar
  11. 11.
    Huang, Y., Dong, X., Liu, Y., Li, L.J., Chen, P.: Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 21, 12358–12362 (2011)Google Scholar
  12. 12.
    Notley, S.M., Crawford, R., Ivanova, E.P.: Bacterial interaction with graphene particles and surfaces. Nanotechnol. Nanomater. 5, 99–118 (2013)Google Scholar
  13. 13.
    Song, B., Cuniberti, G., Sanvito, S., Fang, H.: Nucleobase adsorbed at graphene devices: enhance bio-sensorics. Appl. Phys. Lett. 100, 063101 (2012)CrossRefGoogle Scholar
  14. 14.
    Lee, E.C.: Effects of DNA nucleotide adsorption on the conductance of graphene nanoribbons from first principles. Appl. Phys. Lett. 100, 153117 (2012)CrossRefGoogle Scholar
  15. 15.
    Zhang, Y.H., Zhou, K.G., Xie, K.F., Zeng, J., Zhang, H., Peng, Y.: Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms. Nanotechnology 21, 065201 (2010)CrossRefGoogle Scholar
  16. 16.
    Rodríguez, S., Makinistian, L., Albanesi, E.: Theoretical study of the adsorption of histidine amino acid on graphene. J. Phys. Conf. Ser. 705, 012012 (2016)CrossRefGoogle Scholar
  17. 17.
    Ortmann, F., Schmidt, W., Bechstedt, F.: Attracted by long-range electron correlation: adenine on graphite. Phys. Rev. Lett. 95, 186101 (2005)CrossRefGoogle Scholar
  18. 18.
    Lee, J., Choi, Y., Kim, H., Scheicher, R., Cho, J.: Physisorption of DNA nucleobases on h-BN and graphene: vdW-corrected DFT calculations. J. Phys. Chem. C 117, 13435–13441 (2013)CrossRefGoogle Scholar
  19. 19.
    Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006)CrossRefGoogle Scholar
  20. 20.
    Ozaki, T.: Numerical atomic basis orbitals from H to Kr. Phys. Rev. B. 67, 155108 (2003)CrossRefGoogle Scholar
  21. 21.
    Ozaki, T., Nishio, K., Kino, H.: Efficient implementation of the nonequilibrium Green function method for electronic transport. Phys. Rev. B 81, 035116 (2010)CrossRefGoogle Scholar
  22. 22.
    Rajesh, C., Majumder, C., Mizuseki, H., Kawazoe, Y.: A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. J. Chem. Phys. 130, 124911 (2009)CrossRefGoogle Scholar
  23. 23.
    You, X., Pak, J.J.: Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens. Actuators B 202, 1357–1365 (2014)CrossRefGoogle Scholar
  24. 24.
    Cai, B., Wang, S., Huang, L., Ning, Y., Zhang, Z., Zhang, G.J.: Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8, 2632–2638 (2014)CrossRefGoogle Scholar
  25. 25.
    Zhang, T., Nix, M.B., Yoo, B.Y., Deshusses, M.A., Myung, N.V.: Electrochemically functionalized single-walled carbon nanotube gas sensor. Electroanalysis 12, 1153–1158 (2006)CrossRefGoogle Scholar
  26. 26.
    Dong, X., Fu, D., Xu, Y., Wei, J., Shi, Y., Chen, P., Li, J.: Label-free electronic detection of DNA using simple double-walled carbon nanotube resistors. J. Phys. Chem. 112, 9891–9895 (2008)Google Scholar
  27. 27.
    Mao, S., Lu, G., Yu, K., Bo, Z., Chen, J.: Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22, 3521–3526 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. J. Rodríguez
    • 1
    • 2
  • L. Makinistian
    • 3
  • E. Albanesi
    • 1
    • 2
  1. 1.Instituto de Física del Litoral (CONICET-UNL)Santa FeArgentina
  2. 2.Facultad de IngenieríaUniversidad Nacional de Entre RíosOro VerdeArgentina
  3. 3.Departamento de Física, e Instituto de Física Aplicada (INFAP)Universidad Nacional de San Luis-CONICETSan LuisArgentina

Personalised recommendations