Skip to main content
Log in

Computational study of transport properties of graphene upon adsorption of an amino acid: importance of including –\(\hbox {NH}_{2}\) and –COOH groups

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The effects of histidine and its imidazole ring adsorption on the electronic transport properties of graphene were investigated by first-principles calculations within a combination of density functional theory and non-equilibrium Greens functions. Firstly, we report adsorption energies, adsorption distances, and equilibrium geometrical configurations with no bias voltage applied. Secondly, we model a device for the transport properties study: a central scattering region consisting of a finite graphene sheet with the adsorbed molecule sandwiched between semi-infinite source (left) and drain (right) graphene electrode regions. The electronic density, electrical current, and electronic transmission were calculated as a function of an applied bias voltage. Studying the adsorption of the two systems, i.e., the histidine and its imidazole ring, allowed us to evaluate the importance of including the carboxyl (–COOH) and amine (–\(\hbox {NH}_{2}\)) groups. We found that the histidine and the imidazole ring affects differently the electronic transport through the graphene sheet, posing the possibility of graphene-based sensors with an interesting sensibility and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  2. Ferrari, A.C.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 112, 1–343 (2014)

    Google Scholar 

  3. Baraket, M., Stine, R., Lee, S., Robinson, J., Tamanaha, C.R., Sheehab, P.E., Walton, S.G.: Aminated graphene for DNA attachment produced via plasma functionalization. Appl. Phys. Lett. 100, 233123 (2012)

    Article  Google Scholar 

  4. Huang, B., Li, Z., Liu, Z., Zhou, G., Hao, S., Wu, J., Gu, B.L., Duan, W.: Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J. Phys. Chem. C 112, 13442–13446 (2008)

    Article  Google Scholar 

  5. Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, S.: Functionalization of graphene: covalent and non-covalent approaches, derivates and applications. Chem. Rev. 1, 1–58 (2012)

    Google Scholar 

  6. Milowska, K., Majewski, J.: Graphene-based sensors: theoretical study. J. Phys. Chem. C 118, 17395–17401 (2014)

    Article  Google Scholar 

  7. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y.: Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027–1036 (2010)

    Article  Google Scholar 

  8. Liu, Y., Yu, D., Zeng, C., Miao, Z., Dail, L.: Biocompatible graphene oxide-based glucose biosensors. Langmuir 26, 6158–6160 (2010)

    Article  Google Scholar 

  9. Yang, K., Feng, L., Shi, X., Liu, Z.: Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 42, 530–547 (2013)

    Article  Google Scholar 

  10. Nelson, T., Zhang, B., Prezhdo, O.: Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett. 10, 3237–3242 (2010)

    Article  Google Scholar 

  11. Huang, Y., Dong, X., Liu, Y., Li, L.J., Chen, P.: Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 21, 12358–12362 (2011)

  12. Notley, S.M., Crawford, R., Ivanova, E.P.: Bacterial interaction with graphene particles and surfaces. Nanotechnol. Nanomater. 5, 99–118 (2013)

  13. Song, B., Cuniberti, G., Sanvito, S., Fang, H.: Nucleobase adsorbed at graphene devices: enhance bio-sensorics. Appl. Phys. Lett. 100, 063101 (2012)

    Article  Google Scholar 

  14. Lee, E.C.: Effects of DNA nucleotide adsorption on the conductance of graphene nanoribbons from first principles. Appl. Phys. Lett. 100, 153117 (2012)

    Article  Google Scholar 

  15. Zhang, Y.H., Zhou, K.G., Xie, K.F., Zeng, J., Zhang, H., Peng, Y.: Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms. Nanotechnology 21, 065201 (2010)

    Article  Google Scholar 

  16. Rodríguez, S., Makinistian, L., Albanesi, E.: Theoretical study of the adsorption of histidine amino acid on graphene. J. Phys. Conf. Ser. 705, 012012 (2016)

    Article  Google Scholar 

  17. Ortmann, F., Schmidt, W., Bechstedt, F.: Attracted by long-range electron correlation: adenine on graphite. Phys. Rev. Lett. 95, 186101 (2005)

    Article  Google Scholar 

  18. Lee, J., Choi, Y., Kim, H., Scheicher, R., Cho, J.: Physisorption of DNA nucleobases on h-BN and graphene: vdW-corrected DFT calculations. J. Phys. Chem. C 117, 13435–13441 (2013)

    Article  Google Scholar 

  19. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  20. Ozaki, T.: Numerical atomic basis orbitals from H to Kr. Phys. Rev. B. 67, 155108 (2003)

    Article  Google Scholar 

  21. Ozaki, T., Nishio, K., Kino, H.: Efficient implementation of the nonequilibrium Green function method for electronic transport. Phys. Rev. B 81, 035116 (2010)

    Article  Google Scholar 

  22. Rajesh, C., Majumder, C., Mizuseki, H., Kawazoe, Y.: A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. J. Chem. Phys. 130, 124911 (2009)

    Article  Google Scholar 

  23. You, X., Pak, J.J.: Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens. Actuators B 202, 1357–1365 (2014)

    Article  Google Scholar 

  24. Cai, B., Wang, S., Huang, L., Ning, Y., Zhang, Z., Zhang, G.J.: Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8, 2632–2638 (2014)

    Article  Google Scholar 

  25. Zhang, T., Nix, M.B., Yoo, B.Y., Deshusses, M.A., Myung, N.V.: Electrochemically functionalized single-walled carbon nanotube gas sensor. Electroanalysis 12, 1153–1158 (2006)

    Article  Google Scholar 

  26. Dong, X., Fu, D., Xu, Y., Wei, J., Shi, Y., Chen, P., Li, J.: Label-free electronic detection of DNA using simple double-walled carbon nanotube resistors. J. Phys. Chem. 112, 9891–9895 (2008)

    Google Scholar 

  27. Mao, S., Lu, G., Yu, K., Bo, Z., Chen, J.: Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22, 3521–3526 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), through grants PIP 11220150100124CO (S.J.R. and E.A.A.) and 112-201101-00615 (L.M.). Also, L.M. and E.A.A. acknowledge financial support from the Universidad Nacional de San Luis (PROICO 3-10314), and the Universidad Nacional de Entre Ríos, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, S.J., Makinistian, L. & Albanesi, E. Computational study of transport properties of graphene upon adsorption of an amino acid: importance of including –\(\hbox {NH}_{2}\) and –COOH groups. J Comput Electron 16, 127–132 (2017). https://doi.org/10.1007/s10825-016-0943-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0943-x

Keywords

Navigation