Skip to main content
Log in

Design of ultrafast all-optical pulsed-mode 2 \(\times \) 2 crossbar switch using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An all-optical 2 \(\times \) 2 crossbar switch capable of pulsed-mode operation and of handling ultrafast information is proposed and analytically designed. For this purpose, the quantum-dot semiconductor optical amplifier (QD-SOA)-based Mach–Zehnder interferometer (MZI) is employed as two-input two-output switching unit, in which the direction where the input data are forwarded is controlled by a single, purely lightwave excitation of alternating binary content. The performance of the crossbar switch under bitwise pulsed-mode of operation is thoroughly investigated and assessed by means of numerical simulation to find the range of permissible values of critical operating parameters. These parameters are distinguished depending on whether they affect the saturation level of the QD-SOA that is influenced by the optical control signal or translate the associated gain changes into differential phase shift between the MZI arms. This approach highlights the prominent role of the QD-SOA linewidth enhancement factor, which must be chosen to be sufficiently high so that the required switching procedure takes place properly. With this necessary condition, which holds in real QD-SOA devices, it can be determined how the rest parameters must be selected and combined so that the defined performance metrics become acceptable. Finally, an efficient technique for balancing the local extinction ratios in the switched and in the non-switched states of the crossbar configuration is applied in order to optimize its performance and favor its practical use. The guidelines derived for the design of the scheme are technologically satisfiable and can be useful for its implementation and exploitation in diverse switching applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Maier, M.: Optical Switching Networks. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  2. Papadimitriou, G.I., Papazoglu, C., Pomportsis, A.S.: Optical switching: switch fabrics, techniques and architectures. J. Lightwave Technol. 21(2), 384–405 (2003)

    Article  Google Scholar 

  3. Ramaswami, R., Sivarajan, K.N.: Optical Networks: A Practical Perspective, 2nd edn. Morgan Kauffman Publishers, San Francisco (2002)

    Google Scholar 

  4. Varvarigos, E.M.: The ‘Packing’ and the ‘Scheduling Packet’ switch architectures for almost all-optical lossless networks. J. Lightwave Technol. 16(10), 1757–1767 (1998)

    Article  Google Scholar 

  5. Chattopadhyay, T.: All-optical programmable Boolean logic unit using semiconductor optical amplifiers on the Mach–Zehnder interferometer arms switch. IET Optoelectron. 5(6), 270–280 (2011)

  6. Tsiokos, D., et al.: 10-Gb/s all-optical half-adder with interferometric SOA gates. IEEE Photonics Technol. Lett. 16(1), 284–286 (2004)

    Article  Google Scholar 

  7. Hill, M.T., et al.: \(1 \times 2\) optical packet switch using all-optical header processing. Electron. Lett. 37(12), 774–775 (2001)

    Article  Google Scholar 

  8. Yao, S., Yoo, S.J.B., Mukherjee, B., Dixit, S.: All-optical packet switching for metropolitan area networks: opportunities and challenges. IEEE Commun. Mag. 39(3), 142–148 (2001)

    Article  Google Scholar 

  9. Ma, X., Kuo, G.S.: Optical switching technology comparison: optical MEMS vs. other technologies. IEEE Commun. Mag. 41(11), S16–S23 (2003)

    Google Scholar 

  10. Albores-Mejia, A., et al.: Integrated 2 \(\times \) 2 quantum dot optical crossbar switch in 1.55 \(\mu \)m wavelength range. Electron. Lett. 45(6), 313–314 (2009)

    Article  Google Scholar 

  11. Kurumida, J., Ben Yoo, S.J.: Nonlinear optical signal processing in optical packet switching systems. IEEE J. Sel. Topics Quantum Electron. 18(2), 978–987 (2012)

    Article  Google Scholar 

  12. Li, Y., Zhang, Y., Zhang, L., Poon, A.W.: Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives. Photonics Res. 3(5), B10–B27 (2015)

    Article  Google Scholar 

  13. Miao, W., Luo, J., di Lucente, S., Dorren, H., Calabretta, N.: Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system. Opt. Express 22(3), 2465–2472 (2014)

    Article  Google Scholar 

  14. He, J., et al.: A survey on recent advances in optical communications. Comput. Electr. Eng. 40(1), 216–240 (2014)

    Article  Google Scholar 

  15. Rakshit, J.K., Chattopadhyay, T., Roy, J.N.: Design of ring resonator based all optical switch for logic and arithmetic operations-a theoretical study. Optik 124(23), 6048–6057 (2013)

    Article  Google Scholar 

  16. Rakshit, J.K., Roy, J.N.: Design of all-optical time-division multiplexing scheme with the help of microring resonator. Opt. Appl. 44(1), 39–54 (2014)

    Google Scholar 

  17. Rakshit, J.K., Roy, J.N.: Micro-ring resonator based all-optical reconfigurable logic operations. Opt. Commun. 321, 38–46 (2014)

    Article  Google Scholar 

  18. Bogaerts, W., et al.: Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)

    Article  Google Scholar 

  19. Li, Y., et al.: Coupled-ring-resonator-based silicon modulator for enhanced performance. Opt. Express 16(17), 13342–13348 (2008)

    Article  Google Scholar 

  20. Berrettini, G., Meloni, G., Bogoni, A., Potì, L.: All-optical 2 \(\times \) 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications. IEEE Photonics Technol. Lett. 18(23), 2439–2441 (2006)

    Article  Google Scholar 

  21. Bakopoulos, P., Zouraraki, O., Vyrsokinos, K., Avramopoulos, H.: 2 \(\times \) 2 exchange/bypass switch using 0.8 m of highly nonlinear bismuth oxide fiber. IEEE Photonics Technol. Lett. 19(10), 723–725 (2007)

    Article  Google Scholar 

  22. Porzi, C., Ma, L., Yao, M., Potì, L., Bogoni, A.: All-optical low-power 2 \(\times \) 2 cross/bar switch with a single semiconductor optical amplifier. IEEE Photonics Technol. Lett. 22(17), 1327–1329 (2010)

    Article  Google Scholar 

  23. Leuthold, J., et al.: All-optical space switches with gain and principally ideal extinction ratios. IEEE J Quantum Electron. 34(4), 622–633 (1998)

    Article  Google Scholar 

  24. Theophilopoulos, G., et al.: Optically addressable 2 \(\times \) 2 exchange/bypass packet switch. IEEE Photonics Technol. Lett. 14(7), 998–1000 (2002)

    Article  Google Scholar 

  25. Chattopadhyay, T.: All-optical cross-bar network architecture using TOAD based interferometric switch and designing of reconfigurable logic unit. Opt. Fiber Technol. 17(6), 558–567 (2011)

    Article  Google Scholar 

  26. Pleros, N., et al.: Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching. IEE Proc. Optoelectron. 1(3), 120–126 (2007)

    Article  Google Scholar 

  27. Patel, N.S., Hall, K.L., Rauschenbach, K.A.: Interferometric all-optical switches for ultrafast signal processing. Appl. Opt. 37(14), 2831–2842 (1998)

    Article  Google Scholar 

  28. Schreieck, R.P., Kwakernaak, M.H., Jackel, H., Melchior, H.: All-optical switching at multi-100-Gbit/s data rates with Mach–Zehnder interferometer switches. IEEE J. Quantum Electron. 38(8), 1053–1061 (2002)

    Article  Google Scholar 

  29. Dimitriadou, E., Zoiros, K.E.: On the feasibility of 320 Gb/s all-optical AND gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Prog. Electromagn. Res. B 50, 113–140 (2013)

    Article  Google Scholar 

  30. Berg, T.W., Mørk, J.: Saturation and noise properties of quantum-dot optical amplifiers. IEEE J. Quantum Electron. 40(11), 1527–1539 (2004)

    Article  Google Scholar 

  31. Akiyama, T., et al.: An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005)

    Article  Google Scholar 

  32. Yasuoka, N., et al.: Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-\(\mu {m}\) wavelength bands. IEEE Photonics Technol. Lett. 20(23), 1908–1910 (2008)

    Article  Google Scholar 

  33. Aw, E.T., et al.: Uncooled 2 \(\times \) 2 quantum dot semiconductor optical amplifier based switch, In: Proceedings Conference on Lasers and Electro-Optics (CLEO), pp. 1–2 (2008)

  34. Albores-Mejia, A., et al.: Scalable quantum dot amplifier based optical switch matrix, In: Proceedings European Conference on Integrated Optics (ECIO), pp. 341–344 (2008)

  35. Roy, J.N.: Mach-Zehnder interferometer-based tree architecture for all-optical logic and arithmetic operations. Optik 120(7), 318–324 (2009)

    Article  Google Scholar 

  36. Papadopoulos, G., Zoiros, K.E.: On the design of semiconductor optical amplifier-assisted Sagnac interferometer with full data dual output switching capability. Opt. Laser Technol. 43(3), 697–710 (2011)

    Article  Google Scholar 

  37. Huang, A., et al.: Sagnac fiber logic gates and their possible applications: a system perspective. Appl. Opt. 33(26), 6254–6267 (1994)

    Article  Google Scholar 

  38. Sugawara, M., Akiyama, T., Hatori, N., Nakata, Y., Ebe, H., Ishikawa, H.: Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gbs \(^{-1}\) and a new scheme of 3R regenerators. Meas. Sci. Technol. 13(11), 1683–1691 (2002)

    Article  Google Scholar 

  39. Green, P.E.: Fiber Optic Networks. Prentice Hall, New Jersey (1993)

    Google Scholar 

  40. Leuthold, J., Eckner, J., Holtmann, C., Hess, R., Melchior, H.: All-optical 2 \(\times \) 2 switches with 20 dB extinction ratios. Electron. Lett. 32(24), 2235–2236 (1996)

    Article  Google Scholar 

  41. Mynbaev, D.K., Scheiner, L.L.: Fiber-Optic Communications Technology. Prentice Hall, New Jersey (2001). (ch. 13)

  42. Dimitriadou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightwave Technol. 31(23), 3813–3821 (2013)

    Article  Google Scholar 

  43. Li, X., Li, G.: Comments on “Theoretical analysis of gain recovery time and chirp in QD-SOA”. IEEE Photonics Technol. Lett. 18(22), 2434–2435 (2006)

    Article  Google Scholar 

  44. Matsumoto, A., et al.: Numerical analysis of ultrafast performances of all-optical logic-gate devices integrated with InAs QD-SOA and ring resonators. IEEE J. Quantum Electron. 49(1), 51–58 (2013)

    Article  Google Scholar 

  45. Rostami, A., et al.: All-optical switching using microring resonators including quantum-dots, In: Proceedings International Symposium on Optomechatronic Technologies (ISOT) (2010)

  46. Wong, W.M., Blow, K.J.: Travelling-wave model of semiconductor optical amplifier based non-linear loop mirror. Opt. Commun. 215(1–3), 169–184 (2003)

    Article  Google Scholar 

  47. Agrawal, G.P.: Fiber-Optic Communication Systems, 3rd edn. Wiley, New York (2002)

    Book  Google Scholar 

  48. Vardakas, J.S., Zoiros, K.E.: Performance investigation of all-optical clock recovery circuit based on Fabry–Pérot filter and SOA-assisted Sagnac switch. Opt. Eng. 46(8) (2007) (art. no. 085005/1-21)

  49. Hinton, K., Raskutti, G., Farrell, P.M., Tucker, R.S.: Switching energy and device size limits on digital photonic signal processing technologies. IEEE J. Sel. Topics Quantum Electron. 14(3), 938–945 (2008)

    Article  Google Scholar 

  50. Gutiérrez-Castrejón, R., Occhi, L., Schares, L., Guekos, G.: Recovery dynamics of cross-modulated beam phase in semiconductor amplifiers and applications to all-optical signal processing. Opt. Commun. 195(1–4), 167–177 (2001)

    Article  Google Scholar 

  51. MacWilliams, F.J., Sloane, N.J.A.: Pseudo-random sequences and arrays. Proc. IEEE 64(12), 1715–1729 (1976)

    Article  MathSciNet  Google Scholar 

  52. Eiselt, M., Pieper, W., Weber, H.G.: SLALOM: semiconductor laser amplifier in a loop mirror. J. Lightwave Technol. 13(10), 2099–2112 (1995)

    Article  Google Scholar 

  53. Dimitriadou, E., Zoiros, K.E.: On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Laser Technol. 44(3), 600–607 (2012)

  54. Zilkie, A.J., et al.: Time-resolved linewidth enhancement factors in quantum dot and higher-dimensional semiconductor amplifiers operating at 1.55 \(\mu {m}\). J. Lightwave Technol. 26(11), 1498–1509 (2008)

  55. Dimitriadou, E., Zoiros, K.E.: On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. Opt. Laser Technol. 44(6), 1971–1981 (2012)

    Article  Google Scholar 

  56. O’Driscoll, I., et al.: Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 91(7) (2007) (art. no. 071111/ 1–3)

  57. Gayen, D.K., Chattopadhay, T., Zoiros, K.E.: All-optical D flip-flop using single quantum-dot semiconductor optical amplifier assisted Mach–Zehnder interferometer. J. Comput. Electron. 14(1), 129–138 (2015)

    Article  Google Scholar 

  58. Harris, N.C., et al.: Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22(9), 10487–10493 (2014)

    Article  Google Scholar 

  59. LeGrange, J.D., et al.: Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit. Opt. Express 22(11), 13600–13615 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos E. Zoiros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kastritsis, D., Zoiros, K.E. & Dimitriadou, E. Design of ultrafast all-optical pulsed-mode 2 \(\times \) 2 crossbar switch using quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer. J Comput Electron 15, 1046–1063 (2016). https://doi.org/10.1007/s10825-016-0863-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0863-9

Keywords

Navigation