Skip to main content
Log in

Investigation and comparison of bare-dihydrogenated junction rectifiers of graphene and silicene nanoribbons

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Although silicon and similar bulk materials are widely used in today’s integrated circuits, the transition to lower dimensional structures such as two-dimensional graphene, one-dimensional graphene nanoribbons (GNRs) and silicene nanoribbons (SiNRs) seems inescapable due to the increment of inelastic scattering and related performance degrading effects in bulk circuit components. In this context, GNRs and SiNRs provide advantages such as low area consumption and the adjustment of their electronic behaviours by edge states and widths. On the other hand, rectifiers together with their static and dynamic behaviours constitute the basics of the electronics technology. In this paper, rectifier characteristics of bare-dihydrogenated junctions of GNR and SiNR structures are investigated and compared utilizing first-principles approach. Density functional theory in combination with non-equilibrium Green’s function formalism are used to obtain current–voltage characteristics, transmission eigenstates and dynamic electron densities of the considered GNR and SiNR rectifiers and then these quantities are processed to obtain the dynamical resistance, junction capacitance and time constants of these structures, which is essential for graphene and silicene based electronics design. The paper is concluded with the discussion of the large-signal and small-signal performances of the considered GNR and SiNR rectifiers for commercial integrated circuit applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Samal, S.K., Peng, Y., Pathak, M., Lim, S.K.: Ultralow power circuit design with subthreshold/near-threshold 3-D IC technologies. IEEE Trans. Compon. Packag. Manuf. Technol. 5(7), 980–990 (2015)

    Article  Google Scholar 

  2. Strawn, G., Strawn, C.: Moore’s law at fifty. IEEE IT Professional 17(6), 69–72 (2015)

    Article  Google Scholar 

  3. Coffey, K.R., Barmak, K., Sun, T., Warren, A.P., Yao, B.: Grain boundary and surface scattering in interconnect metals. In: IEEE International Interconnect Technology Conference, pp. 1–3 (2013)

  4. Olcan, D.I., Petrovich, D.S.: Kolundzica B.M., Comparison of scattering from 2-D and 3-D structures with frequency-dependent materials in time and frequency domains. In: IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, pp: 1–5 (2013)

  5. Shen, H., Shi, Y., Wang, X.: Synthesis, charge transport and device applications of graphene nanoribbons. Synth. Met. 210, 109–122 (2015)

    Article  Google Scholar 

  6. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  Google Scholar 

  7. Jiang, J.-W., Wang, J.-S., Li, B.: Young’s modulus of graphene: a molecular dynamics study. Phys. Rev. B 80, 113405 (2009)

    Article  Google Scholar 

  8. Obrazstsov, A.N.: Chemical vapour deposition: making graphene on a large scale. Nat. Nanotechnol. 4, 212–213 (2009)

    Article  Google Scholar 

  9. Allen, J.A., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)

    Article  Google Scholar 

  10. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stromer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(10), 351–355 (2008)

    Article  Google Scholar 

  11. Chen, Z., Lin, Y.-M., Rooks, M.J., Avouris, Ph: Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)

    Article  Google Scholar 

  12. Yamacli, S.: Extraction of the voltage-dependent quantum capacitance and kinetic inductance of GNRFETs: a first-principles study. J. Comput. Electron. 14(1), 249–256 (2015)

    Article  Google Scholar 

  13. Xue, G., Tang, Q., Tong, Y., Liu, Y.: Size-controlled ambipolar graphene nanoribbon transistors by an all-dry mask method. Synth. Met. 205, 6–10 (2015)

    Article  Google Scholar 

  14. Jang, S.L., Li, S.H.: Gate coupled and zener diode triggering silicon-controlled rectifiers for electrostatic discharge protection circuits. Solid State Electron. 46(2), 263–267 (2002)

    Article  Google Scholar 

  15. Foster, M.P., Stone, D.A.: Describing function model of series resonant inverter with current limiting diode-clamp. Electron. Lett. 47(25), 1363–1364 (2011)

    Article  Google Scholar 

  16. Kimura, Y., Kiso, T., Higaki, T., Sun, Y.: Maemoto T., Sasa S., Inoue M., Rectification effects in ZnO-based transparent self-switching nano-diodes. In: IEEE International Meeting for Future of Electron Devices, pp. 1–2 (2012)

  17. Micheli, G., Leblebici, Y., Gijs, J., Voros, J.: Nanosystems Design and Technology. Springer, New York (2009)

    Book  Google Scholar 

  18. Appenzeller, J., Lin, Y.-M., Konch, J., Avouris, Ph: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004)

    Article  Google Scholar 

  19. Ilatikhameneh, H., Tan, Y., Novakovic, B., Klimeck, G., Rahman, R., Appenzeller, J.: Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials. IEEE J. Explor. Solid State Comput. Devices Circuits 1, 12–18 (2015)

    Article  Google Scholar 

  20. Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on 2-D materials. Nat. Nanotechnol. 9, 768–779 (2014)

    Article  Google Scholar 

  21. Szabo A., Koester S.J., Luisier M.: Metal-dichalcogenide hetero-TFETs: are they a viable option for low power electronics? In: IEEE 72nd Annual Device Research Conference (DRC), pp. 19–20 (2014)

  22. Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Appenzeller, J., Rahman, R.: Deielctric engineered tunnel field effect transistor. IEEE Electron Device Lett. 36(10), 1097–1100 (2015)

    Article  Google Scholar 

  23. Ilatikhameneh, H., Rahman, R., Appenzeller, J., Klimeck, G.: Electrically doped WTe\(_{2}\) transistors. In: IEEE International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp: 270–272 (2015)

  24. Fiori, G., Neumaier, D., Szafranek, B.N., Lannaccone, G.: Bilayer graphene transistors for analog electronics. IEEE Trans. Electron Devices 61(3), 729–733 (2014)

    Article  Google Scholar 

  25. Chen, N.L.: Electronic properties of armchair graphene nanoribbons with BN-doping. Solid State Commun. 191, 56–65 (2014)

    Article  Google Scholar 

  26. Zou, D.-Q., Song, Y., Xie, Z., Li, Z.-L., Wang, C.-K.: Large rectification ratio induced by nitrogen (boron) doping in graphene nanoribbon electrodes for OPE junctions. Phys. Lett. A 379, 1842–1846 (2015)

    Article  Google Scholar 

  27. Wang, L.-H., Zhang, Z.-H., Ding, B.-J., Guo, Y.: Size dependence rectification performances induced by boron and nitrogen co-doping in rhombic graphene nanoribbons. Phys. Lett. A 378, 904–908 (2014)

    Article  MATH  Google Scholar 

  28. Stander N.: Transport measurements on graphene p-n junctions. Ph.D. Thesis, Stanford University (2010)

  29. An, Y., Wang, K., Yang, Z., Liu, Z., Jia, G., Jiao, Z., Wang, T., Xu, G.: Negative differential resistance and rectification effects in step-like graphene nanoribbons. Org. Electron. 17, 262–269 (2015)

    Article  Google Scholar 

  30. Zhai, X., Jin, G.: Bipolar spin diode based on a bent graphene nanoribbon. Solid State Commun. 152, 2109–2112 (2012)

    Article  Google Scholar 

  31. Al-Dirini, F., Hossain, F.M., Nirmalathas, A., Skafidas, E.: Alll-graphene planar double barrier resonant tunnelling diodes. J. Electron Devices Soc. 2(5), 118–122 (2014)

    Article  Google Scholar 

  32. Kargar, A.: Analytical modeling of graphene nanoribbon Schottky diodes using asymmetric contacts. J. Comput. Theor. Nanosci. 8, 1–6 (2011)

    Article  Google Scholar 

  33. Kang, J., Wu, F., Li, S.-S., Xia, J.-B., Li, J.: Antiferromagnetic coupling and spin filtering in asymmetrically hydrogenated graphene nanoribbon homojunction. Appl. Phys. Lett. 100, 153102 (2012)

    Article  Google Scholar 

  34. Zeng, J., Chen, K.-Q., He, J., Zhang, X.-J., Sun, C.Q.: Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions. J. Phys. Chem. C 115, 25072–25076 (2011)

    Article  Google Scholar 

  35. Liu, J., Zhang, Z.H., Deng, X.Q., Fan, Z.Q., Tang, G.P.: Electronic structures and transport properties of armchair graphene nanoribbons by ordered doping. Organ. Electron. 18, 135–142 (2015)

    Article  Google Scholar 

  36. Li, J., Zhang, Z.H., Zhang, J.J., Deng, X.Q.: Rectifying regularity for a combined nanostructure of two trigonal graphenes with different edge modifications. Organ. Electron. 13, 2257–2263 (2012)

    Article  Google Scholar 

  37. Ling, Y.-C., Ning, F., Zhou, Y.-H., Chen, K.-Q.: Rectifying behavior and negative differential resistance in triangular graphene p-n junctions induced by vertex B-N mixture doping. Organ. Electron. 19, 92–97 (2015)

    Article  Google Scholar 

  38. Zhao, P., Liu, D.S., Li, S.J., Chen, G.: Modulation of rectification and negative differential resistance in graphene nanoribbon by nitrogen doping. Phys. Lett. A 377, 1134–1138 (2013)

    Article  Google Scholar 

  39. Peng, J., Zhou, Y.-H., Chen, K.-Q.: Influence of boundary types on rectifying behaviors in hexagonal boron-nitride/graphene nanoribbon heterojunctions. Organ. Electron. 27, 137–142 (2015)

    Article  Google Scholar 

  40. Li, J., Zhang, Z.H., Qui, M., Yuan, C., Deng, X.Q., Fan, Z.Q., Tang, G.P., Liang, B.: High-performance current rectification in a molecular device with doped graphene electrodes. Carbon 80, 575–582 (2014)

    Article  Google Scholar 

  41. Singh, A.K., Auton, G., Hill, E., Song, A.: Graphene based ballistic rectifiers. Carbon 84, 124–129 (2015)

    Article  Google Scholar 

  42. Cao, C., Long, M.-Q., Zhang, X.-J., Mao, X.-C.: Giant magnetoresistance and spin-filtering effects in zigzag graphene and hexagonal boron nitride based heterojunction. Phys. Lett. A 379, 1527–1531 (2015)

    Article  Google Scholar 

  43. Cao, C., Chen, N.-L., Long, M.-Q., Xu, H.: Rectifying performance in zigzag graphene nanoribbon heterojunctions with different edge hydrogenations. Phys. Lett. A 377, 1905–1910 (2013)

    Article  Google Scholar 

  44. Deng, X.Q., Zhang, Z.H., Tang, G.P., Fan, Z.Q., Yang, C.H.: Spin filter effects in zigzag-edge graphene nanoribbons with symmetric and asymmetric edge hydrogenations. Carbon 66, 646–653 (2014)

    Article  Google Scholar 

  45. Kang, J., Wu, F., Li, J.: Doping induced spin filtering effect in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Appl. Phys. Lett. 98, 083109 (2011)

    Article  Google Scholar 

  46. Cao, C., Chen, L., Huang, W., Xu, H.: Electronic transport of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Open Chem. Phys. J. 4, 1–7 (2012)

    Article  Google Scholar 

  47. Deng, X.Q., Zhang, Z.H., Yang, C.H., Zhu, H.L., Liang, B.: The design of spin filter junction in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Org. Electron. 14(12), 3240–3248 (2013)

    Article  Google Scholar 

  48. Son, Y.-L., Zhang, Y., Zhang, J.-M., Lu, D.-B.: Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons. Appl. Surf. Sci. 256(21), 6313–6317 (2010)

    Article  Google Scholar 

  49. Trivedi, S., Anurag, S., Rajnish, K.: Electronic and transport properties of silicene nanoribbons. J. Comput. Theor. Nanosci. 11(3), 789–794 (2014)

    Article  Google Scholar 

  50. Kara, A., Enriquez, H., Seitsonen, A.P., Voon, L.C., Vizzini, S., Aufray, B., Aughaddou, H.: A review on silicene-new candidate for electronics. Surf. Sci. Rep. 67(1), 1–8 (2012)

    Article  Google Scholar 

  51. Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z., Yu, D., Lu, J.: Tunable bandgap in silicene and germanene. Nano Lett. 12, 113–118 (2012)

    Article  Google Scholar 

  52. Zhou, B., Zhou, B., Zeng, Y., Zhou, G., Duan, M.: Tunable electronic and transport properties for ultranarrow armchair-edge silicene nanoribbons under spin-orbit coupling and perpendicular electric field. Phys. Lett. A 380(1–2), 282–287 (2016)

    Article  MathSciNet  Google Scholar 

  53. Li, H., Wang, L., Liu, Q., Zheng, J., Mei, W.-N., Gao, Z., Shi, J., Lu, J.: High performance silicene nanoribbon field effect transistors with current saturation. Eur. Phys. J. B 85, 1–6 (2012)

    Article  Google Scholar 

  54. Zhang, D., Long, M., Zhang, X., Cao, C., Xu, H., Li, M., Chan, K.: Bipolar spin-filtering, rectifying and giant magnetoresistance effects in zigzag silicene nanoribbons with asymmetric edge hydrogenation. Chem. Phys. Lett. 616, 178–183 (2014)

    Article  Google Scholar 

  55. Yamacli, S.: First principles study of the voltage-dependent conductance properties of n-type and p-type graphene-metal contacts. Comput. Mater. Sci. 81, 607–611 (2014)

    Article  Google Scholar 

  56. Huang, Y., Zhang, Z., Ma, F., Chu, P.K., Dong, C., Wei, X.: First-principles calculation of the band structure, electronic states, and optical properties of Cr-doped ZnS double-wall nanotubes. Comput. Mater. Sci. 101, 1–7 (2015)

    Article  Google Scholar 

  57. Srivastava, A., Tyagi, N., Ahuja, R.: First-principles study of structural and electronic properties of gallium based nanowires. Solid State Sci. 23, 35–41 (2013)

    Article  Google Scholar 

  58. Min, Y., Fang, H.J., Zhong, C.G., Dong, Z.C., Chen, C.P., Yao, K.L.: Disconnect armchair carbon nanotube as rectifier predicted by first-principles study. Comput. Mater. Sci. 81, 418–422 (2014)

    Article  Google Scholar 

  59. Min, Y., Fang, H.J., Zhong, C.G., Dong, Z.C., Zhao, Z.Y., Zhou, P.X., Yao, K.L.: Bias changing molecule-lead couple and inducing low bias negative differential resistance for electrons acceptor predicted by first-principles study. Phys. Lett. A 379(40–41), 2637–2640 (2015)

    Article  Google Scholar 

  60. Atomistix Toolkit version 2014.1, Quantumwise A/S, Cophenagen, Denmark

  61. Brandbyge, M., Mozos, J.-L., Ordejon, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  Google Scholar 

  62. Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D.: The Siesta method for ab initio order-N materials simulation. J. Phys. 14, 2745 (2002)

  63. Abadir, G.B., Walus, K., Pulfrey, D.L.: Basis set choice for DFT/NEGF simulations of carbon nanotubes. J. Comput. Electron. 8, 1–9 (2009)

    Article  Google Scholar 

  64. Zhang, X.-L., Liu, L.-F., Liu, W.-M.: Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene. Sci. Rep. 33, 2908 (2013)

    Google Scholar 

  65. Jia, T.T., Zheng, M.-M., Fan, X.-Y., Su, Y., Li, S.-J., Liu, H.-Y., Chen, G., Kawazoe, Y.: Band gap on/off switching of silicene superlattice. J. Phys. Chem. C 119(35), 20747–20754 (2015)

    Article  Google Scholar 

  66. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  67. Yamacli, S.: Algebraic current-voltage and voltage dependent resistance expressions for ballistic nano conductors and their low voltage nonlinearity. Nano Micro Lett. 5(3), 169–173 (2013)

    Article  Google Scholar 

  68. The International Technology Roadmap for Semiconductors (ITRS), www.itrs.net (2015)

  69. Sakuma, K., Koizumi, H.: Influence of junction capacitance of switching devices on Class E rectifier. In: IEEE International Symposium on Circuits and Systems, pp. 1965–1968 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhan Yamacli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamacli, S. Investigation and comparison of bare-dihydrogenated junction rectifiers of graphene and silicene nanoribbons. J Comput Electron 15, 389–399 (2016). https://doi.org/10.1007/s10825-016-0805-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0805-6

Keywords

Navigation