Skip to main content
Log in

Ohmic contact in graphene/SnSe2 Van Der Waals heterostructures and its device performance from ab initio simulation

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Van der Waals (vdW) type metallic/semiconducting heterostructures have attracted much attention for applications like nanoelectronics. The electronic properties of graphene/SnSe2 vdW heterostructure are investigated by the first-principles calculation. The band dispersions of both the graphene and SnSe2 layers are well preserved in the graphene/SnSe2 vdW heterostructure. Notably, n-type Ohmic contact is found at the graphene/SnSe2 vdW interface so that graphene is a fantastic electrode for the SnSe2 Schottky barrier field-effect transistor (SBFET). The on-state current of the 10-nm-gate-long ML SnSe2 SBFET with graphene electrode is 1535 µA/µm for high-performance (HP) application, which is twice that of the ML MoS2 SBFET with bulk Ti electrode and exceeds the requirement of the International Technology Roadmap for Semiconductors for HP devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang QH, Kalantarzadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712. https://doi.org/10.1038/nnano.2012.193

    Article  CAS  Google Scholar 

  2. Yu P, Yu X, Lu W, Lin H, Sun L, Du K, Liu F, Fu W, Zeng Q, Shen Z, Jin C, Wang QJ, Liu Z (2016) Fast photoresponse from 1T tin diselenide atomic layers. Adv Funct Mater 26(1):137–145. https://doi.org/10.1002/adfm.201503789

    Article  CAS  Google Scholar 

  3. Su Y, Ebrish MA, Olson EJ, Koester SJ (2013) SnSe2 field-effect transistors with high drive current. Appl Phys Lett 103(26):263104. https://doi.org/10.1063/1.4857495

    Article  CAS  Google Scholar 

  4. Pei T, Bao L, Wang G, Ma R, Yang H, Li J, Gu C, Pantelides S, Du S, Gao H-j (2016) Few-layer SnSe2 transistors with high on/off ratios. Appl Phys Lett 108(5):053506. https://doi.org/10.1063/1.4941394

    Article  CAS  Google Scholar 

  5. Zhou X, Gan L, Tian W, Zhang Q, Jin S, Li H, Bando Y, Golberg D, Zhai T (2015) Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv Mater 27(48):8035–8041. https://doi.org/10.1002/adma.201503873

    Article  CAS  Google Scholar 

  6. Young Woon P, Sahng-Kyoon J, Jae Ho J, Sanjib Baran R, Kamran A, Jeong K, Yumin S, Maeng-Je S, Jungh Wa K, Zonghoon L, Minju K, Yeonjin Y, Jinwoo K, Do Young N, Seung-Hyun C (2017) Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation. 2D Mater 4(1):014006. https://doi.org/10.1088/2053-1583/aa51a2

    Article  CAS  Google Scholar 

  7. Huang Z, Wenxu Z, Wanli Z (2016) Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials 9(9):716. https://doi.org/10.3390/ma9090716

    Article  CAS  Google Scholar 

  8. Aamir S, Samad A, Shin YH (2017) Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: a first principles study. Phys Chem Chem Phys 19(31):20677–20683. https://doi.org/10.1039/C7CP03748A

    Article  Google Scholar 

  9. Li G, Ding G, Gao G (2017) Thermoelectric properties of SnSe2 monolayer. J Phys: Condens Matter 29(1):015001. https://doi.org/10.1088/0953-8984/29/1/015001

    Article  CAS  Google Scholar 

  10. Xiang H, Xu B, Xia Y, Yin J, Liu Z (2016) Strain tunable magnetism in SnX2 (X = S, Se) monolayers by hole doping. Sci Rep 6:39218. https://doi.org/10.1038/srep39218

    Article  CAS  Google Scholar 

  11. Wang Y, Yang RX, Quhe R, Zhong H, Cong L, Ye M, Ni Z, Song Z, Yang J, Shi J (2015) Does p-type ohmic contact exist in WSe2-metal interfaces? Nanoscale 8(2):1179–1191. https://doi.org/10.1039/C5NR06204G

    Article  CAS  Google Scholar 

  12. Ni Z, Ye M, Ma J, Wang Y, Quhe R, Zheng J, Dai L, Yu D, Shi J, Yang J (2016) Performance upper limit of sub-10 nm monolayer MoS2 transistors. Adv Electron Mater 2(9):1600191. https://doi.org/10.1002/aelm.201600191

    Article  CAS  Google Scholar 

  13. Min KA, Park J, Wallace RM, Cho K, Hong S (2017) Reduction of Fermi level pinning at Au–MoS2 interfaces by atomic passivation on Au surface. 2D Mater 4(1):015019. https://doi.org/10.1088/2053-1583/4/1/015019

    Article  CAS  Google Scholar 

  14. Liu Y, Stradins P, Wei S-H (2016) Van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci Adv 2(4):e1600069. https://doi.org/10.1126/sciadv.1600069

    Article  CAS  Google Scholar 

  15. Yanwu Z, Shanthi M, Weiwei C, Xuesong L, Won SJ, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  16. Goki E, Giovanni F, Manish C (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274. https://doi.org/10.1038/nnano.2008.83

    Article  CAS  Google Scholar 

  17. Zhang F, Li W, Ma Y, Dai X (2018) Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field. Solid State Commun 271:56–61. https://doi.org/10.1016/j.ssc.2017.12.026

    Article  CAS  Google Scholar 

  18. Quhe R, Wang Y, Ye M, Zhang Q, Yang J, Lu P, Lei M, Lu J (2017) Black phosphorus transistors with van der Waals-type electrical contacts. Nanoscale 9(37):14047–14057. https://doi.org/10.1039/C7NR03941G

    Article  CAS  Google Scholar 

  19. Si C, Lin Z, Zhou J, Sun Z (2017) Controllable Schottky barrier in GaSe/graphene heterostructure: the role of interface dipole. 2D Mater 4(1):015027. https://doi.org/10.1088/2053-1583/4/1/015027

    Article  CAS  Google Scholar 

  20. Jongwon Y, Woojin P, Ga-Yeong B, Yonghun K, Hun Soo J, Yujun H, Sung Kwan L, Yung Ho K, Woong-Ki H, Byoung Hun L (2013) Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9(19):3295–3300. https://doi.org/10.1002/smll.201300134

    Article  CAS  Google Scholar 

  21. Chuang HJ, Tan X, Ghimire NJ, Perera MM, Chamlagain B, Cheng MM, Yan J, Mandrus D, Tománek D, Zhou Z (2014) High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett 14(6):3594–3601. https://doi.org/10.1021/nl501275p

    Article  CAS  Google Scholar 

  22. Xie L, Liao M, Wang S, Yu H, Du L, Tang J, Zhao J, Zhang J, Chen P, Lu X (2017) Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv Mater 29(37):1702522. https://doi.org/10.1002/adma.201702522

    Article  CAS  Google Scholar 

  23. Zhang YM, Fan JQ, Wang WL, Zhang D, Xue QK (2018) Observation of interface superconductivity in a SnSe2-epitaxial graphene van der Waals heterostructure. Phys Rev B 98:220508. https://doi.org/10.1103/PhysRevB.98.220508

    Article  CAS  Google Scholar 

  24. Atomistix ToolKit version 2017.2, QuantumWise A/S. Copenhagen, Denmark. https://www.synopsys.com/silicon/quantumatk.html

  25. Brandbyge M (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):5401. https://doi.org/10.1103/PhysRevB.65.165401

    Article  CAS  Google Scholar 

  26. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Matter 14(11):2745–2779. https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 78(18):3865. https://doi.org/10.1103/physrevlett.77.3865

    Article  Google Scholar 

  28. Monkhorst HJ (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. https://doi.org/10.1103/PhysRevB.16.1746

    Article  Google Scholar 

  29. Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M, Roelofs A (2014) Tunable transport gap in phosphorene. Nano Lett 14(10):5733–5739. https://doi.org/10.1021/nl5025535

    Article  CAS  Google Scholar 

  30. Pan Y, Wang Y, Ye M, Quhe R, Zhong H, Song Z, Peng X, Yu D, Yang J, Shi J (2016) Monolayer phosphorene-metal contacts. Chem Mater 28:2100–2109. https://doi.org/10.1021/acs.chemmater.5b04899

    Article  CAS  Google Scholar 

  31. Pan Y, Yang D, Wang Y, Meng Y, Han Z, Quhe R, Zhang X, Li J, Guo W, Li Y (2017) Schottky barriers in bilayer phosphorene transistors. ACS Appl Mater Interface 9:12694–12705. https://doi.org/10.1021/acsami.6b16826

    Article  CAS  Google Scholar 

  32. Zhang X, Pan Y, Ye M, Quhe R, Wang Y, Guo Y, Zhang H, Dan Y, Song Z, Li J, Yang J, Guo W, Lu J (2017) Three-layer phosphorene-metal interfaces. Nano Res 11(2):707–721. https://doi.org/10.1007/s12274-017-1680-6

    Article  CAS  Google Scholar 

  33. Quhe R, Qiu L, Zhang Q, Wang Y, Han Z, Jing L, Dong C, Kai L, Yu Y, Lun D, Feng P, Ming L, Jing L (2018) Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors. Phys Rev Appl 10(2):024022. https://doi.org/10.1103/PhysRevApplied.10.024022

    Article  CAS  Google Scholar 

  34. Desai SB, Madhvapathy SR, Sachid AB, Llinas JP, Wang Q, Ahn GH, Pitner G, Kim MJ, Bokor J, Hu C (2016) MoS2 transistors with 1-nanometer gate lengths. Science 354(6308):99–102. https://doi.org/10.1126/science.aah4698

    Article  CAS  Google Scholar 

  35. Datta S (1995) Electronic transport in mesoscopic systems. In: Cambridge studies in semiconductor physics and microelectronic engineering (book 3). Cambridge University Press, Cambridge. https://doi.org/10.1063/1.2807624

    Article  Google Scholar 

  36. Kaloni TP, Kou L, Frauenheim T, Schwingenschlögl U (2014) Quantum spin Hall states in graphene interacting with WS2 or WSe2. Appl Phys Lett 105(23):233112. https://doi.org/10.1063/1.4903895

    Article  CAS  Google Scholar 

  37. Huang Y, Ling C, Liu H, Wang S, Geng B (2014) Versatile electronic and magnetic properties of SnSe2 nanostructures induced by the strain. J Phys Chem C 118(17):9251–9260. https://doi.org/10.1021/jp5013158

    Article  CAS  Google Scholar 

  38. Bardeen J (1947) Surface states and rectification at a metal semi-conductor contact. Phys Rev 71(10):717–727. https://doi.org/10.1103/PhysRev.71.717

    Article  Google Scholar 

  39. Xiaochen D, Dongliang F, Wenjing F, Yumeng S, Peng C, Lain-Jong L (2010) Doping single-layer graphene with aromatic molecules. Small 5(12):1422–1426. https://doi.org/10.1002/smll.200801711

    Article  CAS  Google Scholar 

  40. Cho H, Kim SD, Han TH, Song I, Byun JW, Kim YH, Kwon S, Bae SH, Choi HC, Ahn JH (2015) Improvement of work function and hole injection efficiency of graphene anode using CHF3 plasma treatment. 2D Mater 2(1):014002. https://doi.org/10.1088/2053-1583/2/1/014002

    Article  CAS  Google Scholar 

  41. Movva HCP, Ramón ME, Corbet CM, Sonde S, Chowdhury SF, Carpenter G, Tutuc E, Banerjee SK (2012) Self-aligned graphene field-effect transistors with polyethyleneimine doped source/drain access regions. Appl Phys Lett 101(18):183. https://doi.org/10.1063/1.4765658

    Article  CAS  Google Scholar 

  42. Justin W, Liming X, Yanguang L, Hailiang W, Yijian O, Jing G, Hongjie D (2011) Controlled chlorine plasma reaction for noninvasive graphene doping. J Am Chem Soc 133(49):19668–19671. https://doi.org/10.1021/ja2091068

    Article  CAS  Google Scholar 

  43. Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F, Mishchenko A, Georgiou T, Katsnelson MI, Eaves L, Morozov SV (2012) Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071):947–950. https://doi.org/10.1126/science.1218461

    Article  CAS  Google Scholar 

  44. Yu WJ, Li Z, Zhou H, Chen Y, Wang Y, Huang Y, Duan X (2013) Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat Mater 12(3):246–252. https://doi.org/10.1038/NMAT3518

    Article  CAS  Google Scholar 

  45. Lin YF, Li W, Li SL, Xu Y, Aparecidoferreira A, Komatsu K, Sun H, Nakaharai S, Tsukagoshi K (2013) Barrier inhomogeneities at vertically stacked graphene-based heterostructures. Nanoscale 6(2):795–799. https://doi.org/10.1039/c3nr03677d

    Article  CAS  Google Scholar 

  46. Georgiou T, Jalil R, Belle BD, Britnell L, Gorbachev RV, Morozov SV, Kim YJ, Gholinia A, Haigh SJ, Makarovsky O (2013) Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol 8(2):100–103. https://doi.org/10.1038/nnano.2012.224

    Article  CAS  Google Scholar 

  47. Shim J, Kim HS, Shim YS, Kang DH, Park HY, Lee J, Jeon J, Jung SJ, Song YJ, Jung WS (2016) Extremely large gate modulation in vertical graphene/WSe2 heterojunction barristor based on a novel transport mechanism. Adv Mater 28(26):5293–5299. https://doi.org/10.1002/adma.201506004

    Article  CAS  Google Scholar 

  48. Kang J, Jariwala D, Ryder CR, Wells SA, Choi Y, Hwang E, Cho JH, Marks TJ, Hersam MC (2016) Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors. Nano Lett 16(4):2580–2585. https://doi.org/10.1021/acs.nanolett.6b00144

    Article  CAS  Google Scholar 

  49. International Technology Roadmap for Semiconductors (ITRS) 2.0 (2015 Edition), Executive Report. Semiconductor Industry Association. http://www.itrs2.net/

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11704008, 91964101 and 11674005), the Basic Scientific Research Foundation of Beijing Municipal Education Commission (No. 110052971803/031), and the Support Plan of Yuyou Youth and Yuyou Innovation Team of North China University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Li or Jing Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xu, P., Liang, J. et al. Ohmic contact in graphene/SnSe2 Van Der Waals heterostructures and its device performance from ab initio simulation. J Mater Sci 55, 4321–4331 (2020). https://doi.org/10.1007/s10853-019-04286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04286-x

Navigation