Skip to main content

Advertisement

Log in

Theoretical designing of novel heterocyclic azo dyes for dye sensitized solar cells

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Since, the organic dyes that harness sunlight are generally considered as the heart of the dye sensitized solar cells (DSSC), the present study was carried out with the aim to design heterocyclic azo dyes that can be potentially used in DSSC application. Hereby, the analysis based on density functional theory (DFT) and time-dependent DFT calculations of the geometries, electronic structures and absorption spectra of the dyes before and after binding to titanium oxide \((\hbox {TiO}_{2})\) were carried out and investigated in detail. The data obtained from these analyses were then used to determine the open-circuit photovoltage \((\hbox {V}_\mathrm{OC})\), and to measure the important parameters such as the light harvesting efficiency (LHE) and the electron injection efficiency associated with the short-circuit photocurrent density \((\hbox {J}_\mathrm{SC})\). Our investigation reveals that all dyes showed absorbance in the visible region (469–521 nm) with high oscillator strength \((f)\) (1.076–1.564) and LHE (0.9176–0.973). Moreover, we found that the dyes after binding to titanium oxide displayed slightly red-shifted absorption (475–527 nm) with improved oscillator strength \((f)\) (1.121–1.664) and LHE (0.921–0.979). In addition, all dyes showed high \(\hbox {V}_\mathrm{OC}\) (1.068–2.232 eV) and high driving force for the electron injection, thus leading to the larger \(\hbox {J}_\mathrm{SC}\). Our findings indicate that the heterocyclic azo dyes investigated in the current study can display better light to power conversion efficiency if used in the DSSC system, where the origin or their better performance can be attributed to the high \(\hbox {J}_\mathrm{SC}\) and \(\hbox {V}_\mathrm{OC}\) values found for these potential dyes. Based on the detailed study and investigation, we believe that the theoretical criteria used in the present study can be employed as an initial screening tool not merely to assess the properties of other organic dyes, but also to potentially design the organic azo dyes for their potential application in the DSSC systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O’Regan, B., Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal \(\text{ TiO }_{2}\) films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. Abdullah, M.I., Janjua, M.R.S.A., Nazar, M.F., Mahmood, A.: Quantum chemical designing of efficient TC4-based sensitizers by modification of auxiliary donor and \(\uppi \)-spacer. Bull. Chem. Soc. Jpn. 86, 1272–1281 (2013)

    Article  Google Scholar 

  3. Boschloo, G., Hagfeldt, A.: Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42, 1819–1826 (2009)

    Article  Google Scholar 

  4. Nazeeruddin, M.K., Angelis, F.D., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., Gratzel, M.: Combined experimental and DFT–TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835–16847 (2005)

    Article  Google Scholar 

  5. Abdullah, M.I., Janjua, M.R.S.A., Mahmood, A., Ali, S., Ali, M.: Quantum chemical designing of efficient sensitizers for dye sensitized solar cells. Bull. Korean Chem. Soc. 34, 2093–2098 (2013)

    Article  Google Scholar 

  6. Mishra, A., Fischer, M.K.R., Bäuerle, P.: Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. Engl. 48, 2474–2499 (2009)

    Article  Google Scholar 

  7. Zhang, G.L., Bala, H., Cheng, Y.M., Shi, D., Lv, X.J., Yu, Q.J., Wang, P.: High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary \(\uppi \)-conjugated spacer. Chem. Commun. 16, 2198–2200 (2009)

    Article  Google Scholar 

  8. Choi, H., Choi, H., Paek, S., Song, K., Kang, M.-S., Ko, J.: Novel organic sensitizers with a quinoline unit for efficient dye-sensitized solar cells. Bull. Korean Chem. Soc. 31, 125–132 (2010)

    Article  Google Scholar 

  9. Li, Y.-T., Chen, C.-L., Hsu, Y.-Y., Hsu, H.-C., Chi, Y., Chen, B.-S., Liu, W.-H., Lai, C.-H., Lin, T.-Y., Chou, P.-T.: Donor–acceptor organic sensitizers assembled with isoxazole or its derivative 3-oxopropanenitrile. Tetrahedron 66, 4223–4229 (2010)

    Article  Google Scholar 

  10. Irfan, A., Al-Sehemi, A.: Quantum chemical study in the direction to design efficient donor-bridge-acceptor triphenylamine sensitizers with improved electron injection. J. Mol. Model. 18, 4893–4900 (2012)

    Article  Google Scholar 

  11. Al-Eid, M., Limb, S.H., Park, K.-W., Fitzpatrick, B., Han, C.-H., Kwak, K., Hong, K.: Graeme Cooke Facile synthesis of metal-free organic dyes featuring a thienylethynyl spacer for dye sensitized solar cells. Dyes Pigments 104, 197–203 (2014)

    Article  Google Scholar 

  12. Lee, W., Choi, J., Namgoong, J.W., Kim, S.H., Sun, K.C., Jeong, S.H., Yoo, K., Ko, M.J., Kim, J.P.: The effect of five-membered heterocyclic bridges and ethoxyphenyl substitution on the performance of phenoxazine-based dye-sensitized solar cells. Dyes Pigments 104, 185–193 (2014)

    Article  Google Scholar 

  13. Preat, J., Jacquemin, D., Perpete, E.A.: Towards new efficient dye-sensitised solar cells. Energy Environ. Sci. 3, 891–904 (2010)

    Article  Google Scholar 

  14. Tai, C.-K., Chen, Y.-J., Chang, H.-W., Yeh, P.-L., Wang, B.-C.: DFT and TD-DFT investigations of metal-free dye sensitizers for solar cells: effects of electron donors and \(\uppi \)-conjugated linker. Comput. Theor. Chem. 971, 42–50 (2011)

    Article  Google Scholar 

  15. Abbotto, A., Barolo, C., Bellotto, L., De Angelis, F., Gratzel, M., Manfredi, N., Marinzi, C., Fantacci, S., Yum, J., Nazeeruddin, M.K.: Heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. Chem. Commun. 42:5318–5320 (2008)

  16. Towns, A.D.: Developments in azo disperse dyes derived from heterocyclic diazo components. Dyes Pigments 42, 3–25 (1999)

    Article  Google Scholar 

  17. Yesodha, S.K., Pillai, C.K.S., Tsutsumi, N.: Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Prog. Polym. Sci. 29, 45–74 (2004)

    Article  Google Scholar 

  18. Matharu, A., Jeeva, S., Huddleston, P.R., Ramanujam, P.S.: Synthesis and optical storage properties of a thiophene-based holographic recording medium. J. Mater. Chem. 17, 4477–4482 (2007)

    Article  Google Scholar 

  19. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, P.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian Inc., Wallingford (2009)

  20. Dreuw, A., Head-Gordon, M.: Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 105, 4009–4037 (2005)

    Article  Google Scholar 

  21. Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)

    Article  Google Scholar 

  22. Zhang, J., Li, H.-B., Wu, Y., Geng, Y., Duan, Y.-A., Liao, Y., Su, Z.-M.: Chem. J. Chin. Univ. 32, 1343–1348 (2011)

    Google Scholar 

  23. Barone, V., Cossi, M.: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998)

    Article  Google Scholar 

  24. Qin, P., Yang, X.C., Chen, R.K., Sun, L.C., Marinado, T., Edvinsson, T., Boschloo, G., Hagfeldt, G.: Influence of \(\uppi \)-conjugation units in organic dyes for dye-sensitized solar cells. J. Phys. Chem. C 111, 1853–1860 (2007)

    Article  Google Scholar 

  25. Gratzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  Google Scholar 

  26. Zhang, G.L., Bai, Y., Li, R.Z., Shi, D., Wenger, S., Zakeeruddin, S.M., Gratzel, M., Wang, P.: Employ a bisthienothiophene linker to construct an organic chromophorefor efficient and stable dye-sensitized solar cells. Energy Environ. Sci. 2, 92–95 (2009)

    Article  Google Scholar 

  27. Qin, C., Clark, A.E.: DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells. Chem. Phys. Lett. 438, 26–30 (2007)

    Article  Google Scholar 

  28. Hagfeldt, A., Graetzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995)

    Article  Google Scholar 

  29. Persson, P., Bergström, R., Ojamäe, L., Lunell, S.: Quantum-chemical studies of metal oxides for photoelectrochemical applications. Adv. Quant. Chem. 41, 203–263 (2002)

    Article  Google Scholar 

  30. Pearson, R.G.: Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734–740 (1988)

    Article  Google Scholar 

  31. Zhang, C.R., Liu, Z.J., Chen, Y.H., Chen, H.S., Wu, Y.Z., Yuan, L.H.: DFT and TDDFT study on organic dye sensitizers D5, DST and DSS for solar cells. J. Mol. Struct. 899, 86–93 (2009)

    Article  Google Scholar 

  32. Jung, H.S., Lee, J.K.: Dye sensitized solar cells for economically viable photovoltaicsystems. J. Phys. Chem. Lett. 4, 1682 (2013)

    Article  Google Scholar 

  33. Choi, H., Kamat, P.V.: Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano 6, 4418 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to sincerely appreciate the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project no RGP-VPP-255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Mahmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, A., Khan, S.UD. & Rana, U.A. Theoretical designing of novel heterocyclic azo dyes for dye sensitized solar cells. J Comput Electron 13, 1033–1041 (2014). https://doi.org/10.1007/s10825-014-0628-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0628-2

Keywords

Navigation