Skip to main content
Log in

New improved capacitance–voltage model for symmetrical step junction: a way to a unified model for realistic junctions

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Based on the mass-action law, a new capacitance–voltage (C–V) model for symmetrical step junction is presented. Furthermore, we propose a unified C–V model for realistic junction and for any applied-voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nersesyan, S.R., Petrosyan, S.G.: Depletion length and space charge layer capacitance in doped semiconductor nanoshpere. Semicond. Sci. Technol. 27(12), 125009 (2012)

    Article  Google Scholar 

  2. Noda, T., Vrancken, C., Vandervorst, W.: Modeling of junction formation in scaled Si devices. J. Comput. Electron. 13(1), 33–39 (2014)

    Article  Google Scholar 

  3. Lee, S., Lee, J.-H., Kim, K.H., Yoo, S.-J., Tae Gun Kim, T.G., Kim, J.W., Jang- Kim, J.-J.: Determination of the interface energy level alignment of a doped organic hetero-junction using capacitance–voltage measurements. Org. Electron. 13, 2346–2351 (2012)

    Article  Google Scholar 

  4. Reddy, Y.M., Nagaraj, M.K., Reddy, M.S.P., Lee, J.H., Reddy, V.R.: Temperature-dependent current–voltage (I–V) and capacitance–voltage (C–V) characteristics of Ni/Cu/n-InP Schottky barrier diodes. Braz. J. Phys. 43(1–2), 13–21 (2013)

    Article  Google Scholar 

  5. Toyama, M.: Anomalous capacitance in gallium phosphide electroluminescent p–n junctions. Jpn. J. Appl. Phys. 9(8), 904–921 (1970)

    Article  Google Scholar 

  6. Garcia-Belmonte, G., Munar, A., Barea, E.M., Bisquert, J., Ugarte, I., Pacios, R.: Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Org. Electron. 9(5), 847–851 (2008)

    Article  Google Scholar 

  7. Sharma, A., Kumar, P., Singh, B., Chaudhuri, S.R., Ghosh, S.: Capacitance–voltage characteristics of organic Schottky diode with and without deep traps. Appl. Phys. Lett. 99, 023301 (2011)

    Article  Google Scholar 

  8. Tripathi, D.C., Mohapatra, Y.N.: Diffusive capacitance in space charge limited organic diodes: analysis of peak in capacitance–voltage characteristics. Appl. Phys. Lett. 102, 253303 (2013)

    Article  Google Scholar 

  9. Van Den Biesen, J.J.H.: P–N junction capacitances, part I: the depletion capacitance. Philips J. Res. 40(2), 88–102 (1985). J-GLOBAL ID: 200902007581527531, ISSN/ISBN: 0165-5817

  10. Haggag, A., Hess, K.: Analytical theory of semiconductor p–n junctions and the transition between depletion and quasineutral region. IEEE Trans. Electron. Devices 47(8), 1624–1629 (2000)

    Article  Google Scholar 

  11. Boukredimi, A.: New capacitance–voltage model for linearly graded junction. J. Comput. Electron. 13(2), 477–489 (2014)

    Article  Google Scholar 

  12. Shockley, W.: The theory of p–n junctions in semiconductors and p–n junction transistors. Bell Syst. Tech. J. 28(3), 435–489 (1949)

    Article  Google Scholar 

  13. Mazhari, B., Mahajan, A.: An improved interpretation of depletion approximation in p–n-junctions. IEEE Trans. Educ. 48(1), 60–62 (2005)

    Article  Google Scholar 

  14. Csontos, D., Ulloa, S.E.: Modeling of transport through submicron semiconductor structures: a direct solution to the coupled Poisson–Boltzmann equations. J. Comput. Electron. 3(3–4), 215–219 (2004)

    Article  Google Scholar 

  15. Ye, X., Cai, Q., Yang, W., Luo, R.: Roles of boundary conditions in DNA simulations: analysis of ion distributions with the finite-difference Poisson–Boltzmann method. Biophys. J. 97(2), 554–562 (2009)

    Article  Google Scholar 

  16. Liou, J.J., Lindholm, F.A., Park, J.S.: Forward-voltage capacitance and thickness of p–n junction space-charge regions. IEEE Trans. Electron Devices 34(7), 1571–1579 (1987)

    Article  Google Scholar 

  17. Morgan, S.P., Smits, F.M.: Potential distribution and capacitance of a graded p–n junction. Bell Syst. Tech. J. 39(6), 1573–1602 (1960)

    Article  Google Scholar 

  18. Van Mieghem, P., Mertens, R.P., Van Overstraeten, R.J.: Theory of the junction capacitance of an abrupt diode. J. Appl. Phys. 67, 4203–4211 (1990)

    Article  Google Scholar 

  19. Towers, John D.: Finite difference methods for approximating Heaviside functions. J. Comput. Phys. 228, 3478–3489 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kimura, M., Kojiri, T., Tanabe, A., Kato, T.: Exact extraction method of trap densities at insulator interfaces using quasi-static capacitance–voltage characteristics and numerical solutions of physical equations. Solid State Electron. 69, 38–42 (2012)

    Article  Google Scholar 

  21. Chia, A.C.E., LaPierre, R.R.: Electrostatic model of radial p–n junction nanowires. J. Appl. Phys. 114, 074317 (2013)

    Article  Google Scholar 

  22. Corkish, R., Green, M.A.: Junction recombination current in abrupt junction diodes under forward bias. J. Appl. Phys. 80, 3083–3090 (1996)

    Article  Google Scholar 

  23. Murray, H.: Analytic resolution of Poisson–Boltzmann equation in nanometric semiconductor junctions. Solid State Electron. 53(1), 107–116 (2009)

    Article  Google Scholar 

  24. Beznogov, M.V., Suris, R.A.: Theory of space-charge-limited ballistic currents in nanostructures of different dimensionalities. Semiconductors 47(4), 514–524 (2013)

    Article  Google Scholar 

  25. Beznogov, M.V., Suris, R.A.: Theory of space-charge-limited ballistic currents in nanostructures of different dimensionalities. Semiconductors 47(4), 514–524 (2013)

    Article  Google Scholar 

  26. Noda, T., Vrancken, C., Vandervorst, W.: Modeling of junction formation in scaled Si devices. J. Comput. Electron. 13(1), 33–39 (2014)

    Article  Google Scholar 

  27. Mohammadnejad, S., Abkenar, N.J., Bahrami, A.: Normal distribution profile for doping concentration in multilayer tunnel junction. Opt. Quantum Electron. 45(8), 873–884 (2013)

    Article  Google Scholar 

  28. Santillán, M.: On the use of the Hill functions in mathematical models of gene regulatory networks. Math. Model. Nat. Phenom. 3(2), 85–97 (2008)

    Article  MathSciNet  Google Scholar 

  29. Sudheer, N.V., Chakravorty, A.: Regional approach to model charges and capacitances of intrinsic carbon nanotube field effect transistors. J. Comput. Electron. 11(2), 166–171 (2012)

    Article  Google Scholar 

  30. Kennedy, D.P.: The potential and electric field at the metallurgical boundary of an abrupt p–n semiconductor junction. IEEE Trans. Electron Devices 22(11), 988–994 (1975)

    Article  Google Scholar 

  31. Shirts, Randall B., Roy, G., Gordon, R.G.: Improved approximate analytic charge distributions for abrupt p–n junctions. J. Appl. Phys. 50, 2840–2847 (1979)

    Article  Google Scholar 

  32. Van Den Biesen, J.J.H.: Modeling the inductive behavior of short-base p–n junction diodes at high forward bias. Solid State Electron. 33(11), 1471–1476 (1990)

    Article  Google Scholar 

  33. Altındal, Ş., Uslu, H.: The origin of anomalous peak and negative capacitance in the forward bias capacitance–voltage characteristics of Au/PVA/n-Si structures. J. Appl. Phys. 109, 074503 (2011)

    Article  Google Scholar 

  34. Laux, S.E., Hess, K.: Revisiting the analytic theory of p–n junction impedance: improvements guided by computer simulation leading to a new equivalent circuit. IEEE Trans. Electron Devices 46(2), 396–412 (1999)

    Article  Google Scholar 

  35. Przewlocki, H.M., Gutt, T., Piskorski, K.: The inflection point of the capacitance–voltage, \(\text{ C }(\text{ V }_{{\rm G}})\), characteristic and the flat-band voltage of metal-oxide-semiconductor structures. J. Appl. Phys. 115, 204510 (2014)

    Article  Google Scholar 

  36. Kennedy, D.P.: A mathematical study of space-charge layer capacitance for an abrupt p–n semiconductor junction. Solid State Electron. 20, 311–319 (1977)

    Article  Google Scholar 

  37. Van Den Biesen, J.J.H.: P–N junction capacitances, part II: the neutral capacitance. Philips J. Res. 40(2), 103–113 (1985). J-GLOBAL ID:200902016217177737, ISSN/ISBN: 0165-5817

  38. Pantouvaki, M., Yu, H., Rakowski, M., Christie, P., Verheyen, P., Lepage, G., Van Campenhout, J.: Comparison of silicon ring modulators with interdigitated and p–n junctions. IEEE J. Sel. Topics Quantum Electron. 19(2), 7900308 (2013)

    Article  Google Scholar 

  39. Ma, P., Linder, M., Sanden, M., Zhang, S.-L., Ostling, M., Frank Chang, M.-C.: An analytical model for space-charge region capacitance based on practical doping profiles under any bias conditions. Solid State Electron. 45(1), 159–167 (2001)

    Article  Google Scholar 

  40. Schmidt, M., Pickenhain, R., Grundmann, M.: Exact solutions for the capacitance of space charge regions at semiconductor interfaces. Solid State Electron. 51(6), 1002–1004 (2007)

    Article  Google Scholar 

  41. Kavasoglu, A.S., Kavasoglu, N., Oktik, S.: Simulation for capacitance correction from Nyquist plot of complex impedance–voltage characteristics. Solid State Electron. 52(6), 990–996 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assia Boukredimi.

Appendices

Appendix 1: Capacitance-peak

The capacitance-peak can be obtained from

$$\begin{aligned} \left. {\frac{\hbox {dC}\left( {\hbox {V}_{\mathrm{app}} } \right) }{\hbox {dV}_{\mathrm{app}} }} \right| _{\mathrm{V}_{\mathrm{app}} =\mathrm{V}_{\mathrm{peak}} } =0 \end{aligned}$$
(65)

By including Eq. (36) into Eq. (65) and solving it for \(\hbox {K}_{\mathrm{peak}}\), we get

$$\begin{aligned} \,\hbox {K}_{\mathrm{peak}} =2\sinh ^{-1}\left( {\hbox {K}_{\mathrm{peak}} } \right) -\frac{\hbox {K}_{\mathrm{peak}} }{1+\sqrt{1+\hbox {K}_{\mathrm{peak}}^2 }} \end{aligned}$$
(66)

Solving the above expressions gives

$$\begin{aligned} \hbox {K}_{\mathrm{peak}}&= 2.80421655769\approx 2.8 \nonumber \\ \Rightarrow \,\hbox {V}_{\mathrm{peak}}&= \hbox {V}_\mathrm{d} -3.4485\,\hbox {u}_\mathrm{T} \end{aligned}$$
(67)

Including Eq. (66) into Eq. (36) yields

$$\begin{aligned} \,\hbox {C}_{\mathrm{peak}} =\frac{\upvarepsilon _{\mathrm{sc}} }{\hbox {L}_{\mathrm{Di}} }\sqrt{\frac{2\hbox {K}_0\,\hbox {K}_{\mathrm{peak}} }{1+\hbox {K}_{\mathrm{peak}}^2 +\sqrt{1+\hbox {K}_{\mathrm{peak}}^2 }}}\approx 0.2433\frac{\upvarepsilon _{\mathrm{sc}} }{\hbox {L}_{\mathrm{De}} }\nonumber \\ \end{aligned}$$
(68)

Appendix 2: C–V inflection points

The inflection points of the C–V characteristic for any SSJ are determined by the following equation

$$\begin{aligned} \frac{\hbox {d}^{2}\hbox {C}\left( {\hbox {V}_{\mathrm{app}} } \right) }{\hbox {dV}_{\mathrm{app}}^2 }=0 \end{aligned}$$
(69)

Including Eq. (36) into Eq. (69) and solving, we obtain after some manipulations the analytic equation relating to the inflection points

$$\begin{aligned}&4\left( {\frac{\hbox {sinh}^{-1}\left( \,\hbox {K} \right) }{\hbox {K}}} \right) ^{2}\times \left( {\begin{array}{l} 64+48\hbox {K}^{2}-24\hbox {K}^{4}-17\hbox {K}^{6}-\hbox {K}^{8} \\ +\frac{32\hbox {K}^{2}+16\hbox {K}^{4}-14\hbox {K}^{6} -5\hbox {K}^{8}}{1+\sqrt{1+\hbox {K}^{2}}} \\ \end{array}} \right) \nonumber \\&\qquad +\left( {\begin{array}{l} 208+292\hbox {K}^{2}+125\hbox {K}^{4}+17\hbox {K}^{6}+ \\ \frac{104\hbox {K}^{2}+120\hbox {K}^{4}+39\hbox {K}^{6} +3\hbox {K}^{8}}{1+\sqrt{1+\hbox {K}^{2}}} \\ \end{array}} \right) \nonumber \\&\quad =2\frac{\hbox {sinh}^{-1}\left( \,\hbox {K} \right) }{\hbox {K}}\times \left( {\begin{array}{l} 224+256\hbox {K}^{2}+58\hbox {K}^{4}-2\hbox {K}^{6} \\ +\frac{112\hbox {K}^{2}+100\hbox {K}^{4}+11\hbox {K}^{6} -\;\hbox {K}^{8}}{1+\sqrt{1+\hbox {K}^{2}}}\;\\ \end{array}} \right) \end{aligned}$$
(70)

Solving the above expression gives

$$\begin{aligned} \left\{ {{\begin{array}{l} {\hbox {K}_1 = 12.4573105953\approx 12.5} \\ {\hbox {K}_2 =0.539083653266\approx 0.54} \\ \end{array} }} \right. \end{aligned}$$
(71)

The corresponding applied-voltages \(\hbox {V}_{1}\) and \(\hbox {V}_{2}\) are given, respectively, by:

$$\begin{aligned} \left\{ {\begin{array}{l} \hbox {V}_1 =\hbox {V}_\mathrm{d} -6.431\,\hbox {u}_\mathrm{T} \equiv \,\hbox {V}_{\mathrm{peak}} -2.982\,\hbox {u}_\mathrm{T} \\ \hbox {V}_2 =\hbox {V}_\mathrm{d} -0.151\,\hbox {u}_\mathrm{T} \equiv \,\hbox {V}_{\mathrm{peak}} +3.298\,\hbox {u}_\mathrm{T} \cong \,\hbox {V}_\mathrm{d} \\ \end{array}} \right. \end{aligned}$$
(72)

At these voltages, the capacitances \(\hbox {C}(\hbox {V}_{1})\) and \(\hbox {C}(\hbox {V}_{2})\) are given, respectively, by

$$\begin{aligned} \left\{ {\begin{array}{l}\,\hbox {C}\left( {\hbox {V}_1 :\hbox {K}\equiv \,\hbox {K}_1 } \right) =0.215\frac{\upvarepsilon _{\mathrm{sc}}}{\hbox {L}_{\mathrm{Di}}} \sqrt{\hbox {K}_0 }\approx \frac{\upvarepsilon _{\mathrm{sc}} }{4.5\,\hbox {L}_{\mathrm{De}} } \\ \hbox {C}\left( {\hbox {V}_2 :\hbox {K}\equiv \,\hbox {K}_2 } \right) =0.174\frac{\upvarepsilon _{\mathrm{sc}}}{\hbox {L}_{\mathrm{Di}}} \sqrt{\hbox {K}_0 }\approx \frac{\upvarepsilon _{\mathrm{sc}} }{6.0\hbox {L}_{\mathrm{De}} } \\ \end{array}} \right. \end{aligned}$$
(73)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukredimi, A., Benchouk, K. New improved capacitance–voltage model for symmetrical step junction: a way to a unified model for realistic junctions. J Comput Electron 13, 971–982 (2014). https://doi.org/10.1007/s10825-014-0617-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0617-5

Keywords

Navigation