Skip to main content
Log in

FET based nano-pore sensing: a 3D simulation study

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We report the development and testing of simulation software, which, combining self-consistent Brownian dynamics and Drift Diffusion simulation techniques in a single simulation domain allows the simulation of the effect of ions and charged molecules on the current flowing through a sensing FET. For sensory applications an aqueous solution is introduced above the transistor gate dielectric and the effect of fixed charges on the transistor current is investigated. We significantly extend previous work (Moore et al. in Proceedings of the 11th International Conference on Ultimate Integration on Silicon, pp. 85–88, 2010) by analysing the effects of mobile ions on the system and introduce an initial analysis of the noise associated with the Brownian motion of mobile ions in the solution in order to determine the sensitivity of the FET in measuring the position and number of ions. Finally, results are presented showing the sensitivity of the drain current to the movement of a single ion through a nano-pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Moore, I., Millar, C., Roy, S., Asenov, A.: Integrating drift-diffusion and Brownian simulations for sensory applications. In: Proceedings of the 11th International Conference on Ultimate Integration on Silicon, pp. 85–88 (2010)

    Google Scholar 

  2. Hille, B.: Ion Channels of Excitable Membranes, 3rd edn. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  3. Miedema, H., Vrouenraets, M., Wierenga, J., Meijberg, W., Robillard, G., Eisenberg, B.: A biological porin engineered into a molecular, nanofluidic diode. Nano Lett. 7, 2886–2891 (2007)

    Article  Google Scholar 

  4. Eisenberg, B.: Ion channels as devices. J. Comput. Electron. 2, 245–249 (2003)

    Article  Google Scholar 

  5. Chung, S., Allen, T.W., Kuyucak, S.: Modeling diverse range of potassium channels with Brownian dynamics. J. Biophys. 83, 263–277 (2002)

    Article  Google Scholar 

  6. Roy, G., Brown, A., Adamu-Lema, F., Roy, S., Asenov, A.: Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs. IEEE Trans. Electron Devices 53, 3063–3069 (2006)

    Article  Google Scholar 

  7. Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 μm MOSFETs: a 3-D “atomistic” simulation study. IEEE Trans. Electron Devices 45, 2505–2513 (1998)

    Article  Google Scholar 

  8. Millar, C., Asenov, A., Roy, S., Brown, A.R.: Simulating the bio-nano-CMOS interface. In: 5th IEEE Conference on Nanotechnology, pp. 171–174 (2005)

    Google Scholar 

  9. Saraniti, M., Aboud, S., Eisenberg, R.: The simulation of ionic charge transport in biological ion channels: an introduction to numerical methods. In: Reviews in Computational Chemistry, pp. 229–293. Wiley, New York (2006)

    Chapter  Google Scholar 

  10. Van der Straaten, T.A., Tang, J.M., Ravaioli, U., Eisenberg, R.S., Aluru, N.R.: Simulating ion permeation through the ompF porin ion channel using three-dimensional drift-diffusion theory. J. Comput. Electron. 2, 29–47 (2003)

    Article  Google Scholar 

  11. Millar, C.: 3D Simulation Techniques for Biological Ion Channels. University of Glasgow, Glasgow (2003)

    Google Scholar 

  12. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Berlin (1984)

    Book  Google Scholar 

  13. Millar, C., Roy, S., Brown, A.R., Asenov, A.: Simulating the bio-nanoelectronic Interface. J. Phys., Condens. Matter 19, 1–12 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, I., Millar, C., Roy, S. et al. FET based nano-pore sensing: a 3D simulation study. J Comput Electron 11, 266–271 (2012). https://doi.org/10.1007/s10825-012-0405-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-012-0405-z

Keywords

Navigation