Skip to main content
Log in

Calculation of phonon spectrum and thermal properties in suspended 〈100〉 In X Ga1−X As nanowires

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The phonon spectra in zinc blende InAs, GaAs and their ternary alloy nanowires (NWs) are computed using an enhanced valence force field (EVFF) model. The physical and thermal properties of these nanowires such as sound velocity, elastic constants, specific heat (C v ), phonon density of states, phonon modes, and the ballistic thermal conductance are explored. The calculated transverse and longitudinal sound velocities in these NWs are ∼25% and 20% smaller compared to the bulk velocities, respectively. The C v for NWs are about twice as large as the bulk values due to higher surface to volume ratio (SVR) and strong phonon confinement in the nanostructures. The temperature dependent C v for InAs and GaAs nanowires show a cross-over at 180°K due to higher phonon density in InAs nanowires at lower temperatures. With the phonon spectra and Landauer’s model the ballistic thermal conductance is reported for these III–V NWs. The results in this work demonstrate the potential to engineer the thermal behavior of III–V NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C., et al.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001)

    Article  Google Scholar 

  2. Persson, A., Björk, M., Jeppesen, S., Wagner, J., Wallenberg, L., Samuelson, L.: InAs-x p x nanowires for device engineering. Nano Lett. 6(3), 403–407 (2006)

    Article  Google Scholar 

  3. Lundstrom, M.: Near-Equilibrium Transport: Fundamentals and Applications. World Scientific, Singapore (2011)

    Google Scholar 

  4. Paul, A., Luisier, M., Klimeck, G.: Modified valence force field approach for phonon dispersion: from zinc-blende bulk to nanowires. J. Comput. Electron. (2010)

  5. Li, D., Wu, Y., Fan, R., Yang, P., Majumdar, A.: Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003)

    Article  Google Scholar 

  6. Persson, A., Koh, Y., Cahill, D., Samuelson, L., Linke, H.: Thermal conductance of InAs nanowire composites. Nano Lett. 9(12), 4484–4488 (2009)

    Article  Google Scholar 

  7. Zhou, F., Moore, A., Bolinsson, J., Persson, A., Fröberg, L., Pettes, M., Kong, H., Rabenberg, L., Caroff, P., Stewart, D., et al.: Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. Phys. Rev. B 83(20), 205416 (2011)

    Article  Google Scholar 

  8. Paul, A., Luisier, M., Klimeck, G.: Atomistic modeling of the phonon dispersion and lattice properties of free-standing (100) Si nanowires. In: 2010 14th International Workshop on Computational Electronics (IWCE), pp. 1–4. IEEE Press, New York (2010)

    Chapter  Google Scholar 

  9. Zhang, Y., Cao, J., Xiao, Y., Yan, X.: Phonon spectrum and specific heat of silicon nanowires. J. Appl. Phys. 102, 104303 (2007)

    Article  Google Scholar 

  10. Mingo, N., Broido, D.: Lattice thermal conductivity crossovers in semiconductor nanowires. Phys. Rev. Lett. 93(24), 246106 (2004)

    Article  Google Scholar 

  11. Carrete, J., Longo, R., Gallego, L.: Prediction of phonon thermal transport in thin GaAs, InAs and InP nanowires by molecular dynamics simulations: influence of the interatomic potential. Nanotechnology 22, 185704 (2011)

    Article  Google Scholar 

  12. Sui, Z., Herman, I.: Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures. Phys. Rev. B 48(24), 17938 (1993)

    Article  Google Scholar 

  13. Fu, H., Ozoliņš, V., Zunger, A.: Phonons in gap quantum dots. Phys. Rev. B 59(4), 2881 (1999)

    Article  Google Scholar 

  14. Keating, P.: Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145(2), 637 (1966)

    Article  Google Scholar 

  15. Steiger, S., Salmani-Jelodar, M., Areshkin, D., Paul, A., Kubis, T., Povolotskyi, M., Park, H., Klimeck, G.: Enhanced valence force field model for the lattice properties of gallium arsenide. Phys. Rev. B 84(15), 155204 (2011)

    Article  Google Scholar 

  16. Peelaers, H., Partoens, B., Peeters, F.: Phonon band structure of Si nanowires: a stability analysis. Nano Lett. 9(1), 107–111 (2008)

    Article  Google Scholar 

  17. Markussen, T., Jauho, A., Brandbyge, M.: Heat conductance is strongly anisotropic for pristine silicon nanowires. Nano Lett. 8(11), 3771–3775 (2008)

    Article  Google Scholar 

  18. Grundmann, M.: The Physics of Semiconductors: An Introduction Including Devices and Nanophysics. Springer, Berlin (2006)

    Google Scholar 

  19. Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1(3), 223–231 (1957)

    Article  MathSciNet  Google Scholar 

  20. Lazarenkova, O., Von Allmen, P., Oyafuso, F., Lee, S., Klimeck, G.: An atomistic model for the simulation of acoustic phonons, strain distribution, and grüneisen coefficients in zinc-blende semiconductors. Superlattices Microstruct. 34(3), 553–556 (2003)

    Article  Google Scholar 

  21. Lee, S., Lazarenkova, O., Von Allmen, P., Oyafuso, F., Klimeck, G.: Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots. Phys. Rev. B 70(12), 125307 (2004)

    Article  Google Scholar 

  22. Kane, E.: Phonon spectra of diamond and zinc-blende semiconductors. Phys. Rev. B 31(12), 7865 (1985)

    Article  MathSciNet  Google Scholar 

  23. Mingo, N., Yang, L., Li, D., Majumdar, A.: Predicting the thermal conductivity of Si and Ge nanowires. Nano Lett. 3(12), 1713–1716 (2003)

    Article  Google Scholar 

  24. Cleland, A.: Foundations of Nanomechanics: From Solid-State Theory to Device Applications. Springer, Berlin (2003)

    Google Scholar 

  25. Salmani-Jelodar, M., Steiger, S., Paul, A., Klimeck, G.: Model development for lattice properties of gallium arsenide using parallel genetic algorithm. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 2429–2435. IEEE Press, New York (2011)

    Chapter  Google Scholar 

  26. Strauch, D., Dorner, B.: Phonon dispersion in GaAs. J. Phys., Condens. Matter 2, 1457 (1990)

    Article  Google Scholar 

  27. Orlova, N.: X-ray thermal diffuse scattering measurements of the [100] and [111] phonon dispersion curves of indium arsenide. Phys. Status Solidi B 93(2), 503–509 (1979)

    Article  Google Scholar 

  28. Thonhauser, T., Mahan, G.: Phonon modes in Si [111] nanowires. Phys. Rev. B 69(7), 075213 (2004)

    Article  Google Scholar 

  29. Steiger, S., Povolotskyi, M., Park, H., Kubis, T., Klimeck, G., et al.: Nemo5: a parallel multiscale nanoelectronics modeling tool. IEEE Trans. Nanotechnol. 10(6), 1464–1474 (2011)

    Article  Google Scholar 

  30. http://www.ioffe.ru/SVA/NSM/Semicond/GaInAs/ (2011)

  31. Collaboration: Authors and Editors of the LB Volumes III/17A-22A-41A1b: Gallium arsenide (GaAs), debye temperature, density, heat capacity, melting point. In: Madelung, M.S.O., Rössler, U. (eds.) SpringerMaterials—The Landolt-Börnstein Database. Group IV Elements, IV–IV and III–V Compounds, vol. 41A1b (2011). Part b—Electronic, Transport, Optical and Other Properties. [Online]. Available: http://dx.doi.org/10.1007/10832182_226

    Google Scholar 

  32. Collaboration: Authors and Editors of the LB Volumes III/17A-22A-41A1b: Indium arsenide (InAs), debye temperature, density, hardness, melting point. In: Madelung, M.S.O., Rössler, U. (eds.) SpringerMaterials—The Landolt-Börnstein Database (2011). [Online]. Available: http://dx.doi.org/10.1007/10832182_362

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Sebastian Steiger, Dr. Michael Povolotskyi and Dr. Denis Areshkin for phonon dispersion calculation code, NEMO5, and useful discussions. This work used nanoHUB.org computational resources operated by the Network for Computational Nanotechnology funded by the National Science Foundation (NSF). Financial support from MSD Focus Center, one of six research centers funded under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation (SRC) entity and by the Nanoelectronics Research Initiative (NRI) through the Midwest Institute for Nanoelectronics Discovery (MIND) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Salmani-Jelodar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmani-Jelodar, M., Paul, A., Boykin, T. et al. Calculation of phonon spectrum and thermal properties in suspended 〈100〉 In X Ga1−X As nanowires. J Comput Electron 11, 22–28 (2012). https://doi.org/10.1007/s10825-012-0389-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-012-0389-8

Keywords

Navigation