Skip to main content
Log in

Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work we present the mathematical modeling and the simulation of the diffusive transport of an electron gas confined in a nanostructure. A coupled quantum-classical system is considered, where the coupling occurs in the momentum variable: the electrons are like point particles in the direction parallel to the gas, while they behave like waves in the transverse direction. A drift-diffusion description in the transport direction is obtained thanks to an asymptotic limit of the Boltzmann transport equation for confined electrons. The system is used to model the transport of charged carriers in a nanoscale Double-Gate MOSFET. Simulations of transport in such a device are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bastard, G.: Wave mechanics applied to semiconductor heterostructures, Les éditions de Physique (1996)

  2. Davies, J.H.: The Physics of Low Dimensional Semiconductors. Cambridge Univ. Press, Cambridge (1998)

    Google Scholar 

  3. Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge Univ. Press, Cambridge (1997)

    Google Scholar 

  4. Balestra, F., Cristoloveanu, S., Benachir, M., Brini, J., Elewa, T.: Double gate silicon-on-isolator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Device Lett. EDL-8, 410–412 (1987)

    Article  Google Scholar 

  5. Polizzi, E., Ben Abdallah, N.: Subband decomposition approach for the simulation of quantum electron transport in nanostructures. J. Comput. Phys. 202, 150–180 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben Abdallah, N., Polizzi, E., Mouis, M., Méhats, F.: Simulation of 2D quantum transport in ultrashort DG-MOSFETs: a fast algorithm using subbands. Proceedings of the SISPAD Conference 2003, IEEE product TH8679-TBR, pp. 267–270 (2003)

  7. Mock, M.S.: Analysis of Mathematical Models of Semiconductor Devices. Advances in Numerical Computation, Series 3. Boole Press, Dublin (1983)

    MATH  Google Scholar 

  8. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Vienna (1990)

    MATH  Google Scholar 

  9. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Vienna (1984)

    Google Scholar 

  10. Jungemann, C., Grasser, T., Neinhüs, B., Meinerzhagen, B.: Failure of moments-based transport models in nanoscale devices near equilibrium. IEEE Trans. Electron Devices 52(11), 2404–2408 (2005)

    Article  Google Scholar 

  11. Nekovee, M., Geurts, B.J., Boots, H.M.J., Schuurmans, M.F.H.: Failure of extended–moment–equation approaches to describe ballistic transport in submicrometer structures. Phys. Rev. B 45(12), 6643–6651 (1992)

    Article  Google Scholar 

  12. Baccarani, G., Reggiani, S.: A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects. IEEE Trans. Electron Devices 46(8), 1656 (1999)

    Article  Google Scholar 

  13. Negulescu, C., Ben Abdallah, N., Polizzi, E., Mouis, M.: Simulation Schemes in 2D nanoscale MOSFETs: a WKB based method. J. Comput. Electron., to appear in special issue for the ICWE 10

  14. Ancona, M.G., Iafrate, G.J.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 40, 7347 (1989)

    Article  Google Scholar 

  15. Casssano, G., De Falco, C., Giulianetti, Cl., Sacco, R.: Numerical simulation of tunneling effects in nanoscale semiconductor devices using quantum corrected drift-diffusion models. Comput. Methods Appl. Mech. Eng. 195(19–22), 2193–2208 (2006)

    Article  Google Scholar 

  16. Curatola, G., Iannaccone, G., Fiori, G.: Effective Bohm Quantum Potential for device simulators based on drift-diffusion and energy transport, 1–4 September “SISPAD 2004”, Munich, Germany, pp. 275–278

  17. Degond, P., Méhats, F., Ringhofer, C.: Quantum energy-transport and drift-diffusion models. J. Stat. Phys. 118(3–4), 625–665 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gallego, S., Méhats, F.: Numerical approximation of a quantum drift-diffusion model. C.R. Acad. Sci. Paris, Ser. I 339, 519–524 (2004)

    MATH  Google Scholar 

  19. Pirovano, A., Lacaita, A., Spinelli, A.: Two dimensional Quantum Effects in Nanoscale MOSFETs. IEEE Trans. Electron Devices 49(1), 25–31 (2002)

    Article  Google Scholar 

  20. De Falco, C., Gatti, E., Lacaita, A.L., Sacco, R.: Quantum-corrected drift-diffusion models for transport in semiconductor devices. J. Comput. Phys. 204(2), 533–561 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jüngel, A., Pinnau, R.: Convergent semidiscretization of a nonlinear fourth order parabolic system. Math. Mod. Num. Anal. 37, 277–289 (2003)

    Article  MATH  Google Scholar 

  22. Nier, F.: A stationary Schrödinger-Poisson system arising from the modelling of electronic devices. Forum Math. 2(5), 489–510 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Seeger, K.: Semiconductor Physics. An Introduction, 6th edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  24. Vinter, B., Weisbuch, C.: Quantum Semiconductor Structures. Academic Press, San Diego (1991)

    Google Scholar 

  25. Golse, F., Poupaud, F.: Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac. Asymptot. Anal. 6, 135–169 (1992)

    MATH  MathSciNet  Google Scholar 

  26. Poupaud, F.: Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers. Asymptot. Anal. 4, 293–317 (1991)

    MATH  MathSciNet  Google Scholar 

  27. Ben Abdallah, N., Méhats, F., Vauchelet, N.: Diffusive transport of partially quantized particles: existence uniqueness and long time behaviour. Proc. Edinb. Math. Soc. 49, 513–549 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vauchelet, N.: Diffusive limit of a kinetic system of partially quantized particles in two dimensions, submitted

  29. Pöschel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, San Diego (1987)

    MATH  Google Scholar 

  30. Ben Abdallah, N., Tayeb, M.L.: Diffusion approximation for the one dimensional Boltzmann-Poisson system. Multiscale Model. Simul. 4(3), 896–914 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Series in Appl. Math. Gauthiers-Villars, Paris (2000)

    MATH  Google Scholar 

  32. Scharfetter, D.L., Gummel, H.K.: Large signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron Devices ED-16, 64–77 (1969)

    Article  Google Scholar 

  33. Brezzi, F., Marini, L.D., Pietra, P.: Méthodes d’éléments finis mixtes et schéma de Scharfetter-Gummel. C.R. Acad. Sci. Paris Sér. I 305, 599–604 (1987)

    MATH  MathSciNet  Google Scholar 

  34. Caussignac, Ph., Zimmermann, B., Ferro, R.: Finite element approximation of electrostatic potential in one dimensional multilayer structures with quantized electronic charge. Comput. 45, 251–264 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  35. Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices 11(10), 455 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vauchelet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietra, P., Vauchelet, N. Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET. J Comput Electron 7, 52–65 (2008). https://doi.org/10.1007/s10825-008-0253-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-008-0253-z

Keywords

Navigation