Skip to main content
Log in

A study of threshold voltage fluctuations of nanoscale double gate metal-oxide-semiconductor field effect transistors using quantum correction simulation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we computationally investigate fluctuations of the threshold voltage introduced by random dopants in nanoscale double gate metal-oxide-semiconductor field effect transistors (DG MOSFETs). To calculate variance of the threshold voltage of nanoscale DG MOSFETs, a quantum correction model is numerically solved with the perturbation and the monotone iterative techniques. Fluctuations of the threshold voltage resulting from the random dopant, the gate oxide thickness, the channel film thickness, the gate channel length, and the device width are calculated. Quantum mechanical and classical results have similar prediction on fluctuations of the threshold voltage with respect to different designing parameters including dimension of device geometry as well as the channel doping. Fluctuation increases when the channel doping, the channel film thickness, and/or the gate oxide thickness increase. On the other hand, it decreases when the channel length and/or the device width increase. Calculations of the quantum correction model are quantitatively higher than that of the classical estimation according to different quantum confinement effects in nanoscale DG MOSFETs. Due to good channel controllability, DG MOSFETs possess relatively lower fluctuation, compared with the fluctuation of single gate MOSFETs (less than a half of the fluctuation[-11pc] of SG MOSFETs). To reduce fluctuations of the threshold voltage, epitaxial layers on both sides of channel with different epitaxial doping are introduced. For a certain thickness of epitaxial layers, the fluctuation of the threshold voltage decreases when epitaxial doping decreases. In contrast to conventional quantum Monte Carlo approach and small signal analysis of the Schrödinger-Poisson equations, this computationally efficient approach shows acceptable accuracy and is ready for industrial technology computer-aided design application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fried, D.M., Nowak, E.J., KeIdzierski, J., Duster, J.S., Komegay, K.T.: Proc Device Research Conf. 45 (2003)

  2. Ieong, M., Wong, H.-S.P., Nowak, E., Kedzierski, J., Jones, E.C.: Proc. Int. Symp. Quality Elec. Design 492 (2002)

  3. Wei, L., Chen, Z., Roy, K.: Proc. IEEE Int. SOI Conf. 69 (1998)

  4. Asenov, A.: IEEE Trans. Elec. Dev. 45, 2505 (1998)

    Article  Google Scholar 

  5. Francis, P., Terao, A., Flandre, A.: IEEE Trans. Elec. Dev. 41, 715 (1994)

    Article  Google Scholar 

  6. Suzuki, K., Tanaka, T., Horie, H.: Proc. Int. Workshop VLSI Process and Device Modeling 150 (1993)

  7. Keyes, R.W.: Appl. Phys. 8, 251 (1975)

    Article  Google Scholar 

  8. Frank, D.J., Taur, Y., Ieong, M., Wong, H.-S.P.: Dig. Tech. Papers Symp. VLSI Tech. 169 (1999)

  9. Brown, A.R., Asenov, A., Watling, J.R.: IEEE Trans. Nanotech. 1, 195 (2002)

    Article  Google Scholar 

  10. Andrei, P., Mayergoyza, I.: J. App. Phys. 96, 2071 (2004)

    Article  Google Scholar 

  11. Weinstock, R.: Calculus of variations: With applications to physics and engineering Dover (1974).

  12. Li, Y., Yu, S.M.: Proc. IEEE Nanotech. Conf. 2, 527 (2005)

    MATH  Google Scholar 

  13. Li, Y.: Comput. Phys. Commun. 153, 359 (2003)

    Article  Google Scholar 

  14. Nishinohara, K., Shigyo, N., Wada, T.: IEEE Trans. Elec. Dev. 39, 634 (1992)

    Article  Google Scholar 

  15. Asenov, A., Saini, S.: IEEE Trans. Elec. Dev. 46, 1718–1724 (1999)

    Article  Google Scholar 

  16. Li, Y., Yu, S.-M.: Nanotech. 15, 1009 (2004)

    Article  Google Scholar 

  17. Li, Y., Tang, T.-W., Yu, S.-M.: J. Comput. Elec. 2, 491 (2003)

    Article  MATH  Google Scholar 

  18. Tang, T.-W., Li, Y.: IEEE Trans. Nanotech. 1, 243 (2002)

    Article  Google Scholar 

  19. Asenov, A., Slavcheva, G., Brown, A.R., Davies, J.H., Saini, S.: IEEE Trans. Elec. Dev. 48, 722 (2001)

    Article  Google Scholar 

  20. Li, Y., Chou, H.-M.: IEEE Trans. Nanotech. 4, 645 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Yu, SM. A study of threshold voltage fluctuations of nanoscale double gate metal-oxide-semiconductor field effect transistors using quantum correction simulation. J Comput Electron 5, 125–129 (2006). https://doi.org/10.1007/s10825-006-8831-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-006-8831-4

Keywords

Navigation