Skip to main content
Log in

3D simulation of a silicon quantum dot in a magnetic field based on current spin density functional theory

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We have developed a code for the simulation of the electrical and magnetic properties of silicon quantum dots in the framework of the TCAD Package NANOTCAD-ViDES. We adopt current spin density functional theory with a local density approximation and with the effective mass approximation. We show that silicon quantum dots exhibit large variations of the total spin as the number of electrons in the dot and the applied magnetic field are varied. Such properties are mainly due to the silicon band structure, and make silicon quantum dots interesting systems for spintronic and quantum computing experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friesen, M., et al.: Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67, 121301-1-4 (2003)

    Article  Google Scholar 

  2. Ladd, T.D., et al.: All-silicon quantum computer. Phys. Rev. Lett. 89, 017901-1-4 (2002)

    Article  Google Scholar 

  3. Friesen, M., Tahan, C., Joynt, R., Eriksson, M.A.: Spin readout and initialization in a semiconductor quantum dot. Phys. Rev. B 92, 037901-1-4 (2004)

    Google Scholar 

  4. Das Sarma, S., Fabian, J., Hu, X., Žutić, I.: Theoretical perspective on spintronics and spin-polarized transport. IEEE Trans. Magn. 36, 2821 (2000)

    Article  Google Scholar 

  5. Pala, M.G., Governale, M., Kig, J., Zlicke, U., Iannaccone, G.: Two-dimensional hole precession in an all-semiconductor spin field effect transistor. Phys. Rev. B 69, 045304-1-9 (2004)

    Google Scholar 

  6. Rokhinson, L.P., Guo, L.J., Chou, S.Y., Tsui, D.C.: Spin transitions in a small Si quantum dot. Phys. Rev. B/ 63, 35321 (2000)

    Article  Google Scholar 

  7. Reimann, S.M., Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1325 (2002)

    Article  Google Scholar 

  8. Koskinen, M., Kolehmainen, J., Reimann, S.M., Toivanen, J., Manninen, M.: Quantum dots in magnetic fields: Unrestricted symmetries in the current spin-density functional formalism. The Euro. Phys. J. D 9, 487–490 (1999)

    Article  Google Scholar 

  9. Tanatar, B., Ceperley, D.M.: Ground state of the two-dimensional electron gas. Phys. Rev. B 39, 5005 (1989)

    Article  Google Scholar 

  10. Pala, M.G., Iannaccone, G.: A three-dimensional solver of the Schrödinger equation in momentum space for the detailed simulation of nanostructures. Nanotechnology 13, 369–372 (2002)

    Article  Google Scholar 

  11. Slater, J.C.: A simplification of the Hartree-Fock method. Phys. Rev. B 81, 385–390 (1951)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lisieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisieri, M., Fiori, G. & Iannaccone, G. 3D simulation of a silicon quantum dot in a magnetic field based on current spin density functional theory. J Comput Electron 6, 191–194 (2007). https://doi.org/10.1007/s10825-006-0110-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-006-0110-x

Keywords

Navigation