Skip to main content
Log in

Design and Modelling of Silicon Quantum Dot Based Single Qubit Spin Quantum Gates

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the last two decades, a lot of research has been done for finding the best physical implementation of a quantum computer. Due to integrablity with classical computation hardware and versatility in creating qubits and quantum gates, silicon quantum dot-based systems are one of the most promising systems. In this paper, we have modelled a universal Clifford set of single qubit quantum gates based on silicon quantum dots framework by using the Lindblad master equation, where electron spin resonance (ESR) has been employed for manipulation of qubit states. State spin probability evolution of each of the gates has been reported in presence of dephasing effect. Moreover, the density matrix approach and quantum process tomography of each of the single qubit gates has been investigated. Furthermore, it has been shown that by increasing the ac magnetic field, we can obtain a high-fidelity NOT gate for a considerably wider range of static magnetic fields. This provides us with greater control by considering both ac magnetic field as well static magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xin, T., Wang, B.-X., Li, K.-R., Kong, X.-Y., Wei, S.-J., Wang, T., Ruan, D., Long, G.-L.: Nuclear magnetic resonance for quantum computing: techniques and recent achievements. Chinese Phys. B. 27(2), 020308 (2018)

  2. Sutton, B., Datta, S.: Manipulating quantum information with spin torque. Sci. Rep. 5, 17912 (2015)

    Article  ADS  Google Scholar 

  3. Kan, A., Nam, Y.: Lattice quantum chromodynamics and electrodynamics on a universal quantum computer. arXiv:2107.12769 [quant-ph] (2021). https://doi.org/10.48550/arXiv.2107.12769 

  4. Gale, E. P, Mehdi, Z., Oberg, L. M., Ratcliffe, A. K., Haine, S. A, Hope, J. J.: Optimized fast gates for quantum computing with trapped ions. Phys. Rev. A. 101, 052328 (2020)

  5. Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., Oliver, W.D.: A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019)

    Article  ADS  Google Scholar 

  6. Henriet, L., Beguin, L., Signoles, A., Lahaye, T., Browaeys, A., Reymond, G.O., Jurczak, C.: Quantum computing with neutral atoms. Quantum. 4, 327 (2020)

    Article  Google Scholar 

  7. Gunlycke, D., Jefferson, J.H., Rejec, T., Ramšak, A., Pettifor, D.G., Briggs, G.A.D.: Entanglement between static and flying qubits in a semiconducting carbon nanotube. J. Phys. Condens. Matter. 18(21), S851–S866 (2006)

    Article  ADS  Google Scholar 

  8. Maruri, G.C., Omar, Y., de Coss, R., Bose, S.: Graphene enabled low-control quantum gates between static and mobile spins. Phys. Rev. B Condens. Matter. 89(7), 075426 (2014)

    Article  ADS  Google Scholar 

  9. Habgood, M., Jefferson, J.H., Ramšak, A., Pettifor, D.G., Briggs, G.A.D.: Entanglement of static and flying qubits in degenerate mesoscopic systems. Phys. Rev. B Condens. Matter. 77(7), 1–10 (2008)

    Article  Google Scholar 

  10. Yamamoto, M., Takada, S., Bäuerle, C., Watanabe, K., Wieck, A.D., Tarucha, S.: Electrical control of a solid-state flying qubit. Nat. Nanotechnol. 7(4), 247–251 (2012)

    Article  ADS  Google Scholar 

  11. Vandersypen, L.M.K., Bluhm, H., Clarke, J.S., Dzurak, A.S., Ishihara, R., Morello, A., Reilly, D.J., Schreiber, L.R., Veldhorst, M.: Interfacing spin qubits in quantum dots and donors- hot, dense and coherent. npj Quantum Inf. 3, 34 (2017)

    Article  ADS  Google Scholar 

  12. Bhat, H.A., Khanday, F.A., Kaushik, B.K., Bashir, F., Shah, K.A.: Quantum computing: fundamentals, implementations and applications. IEEE Open J. Nanotechnol. 3, 61–77 (2022). https://doi.org/10.1109/OJNANO.2022.3178545

    Article  Google Scholar 

  13. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A. 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  14. Chen, E., et al.: Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magn. 46, 1873–1878 (2010)

    Article  ADS  Google Scholar 

  15. Locatelli, N., Cros, V., Grollier, J.: Spin-torque building blocks. Nat. Mater. 13, 11–20 (2014)

    Article  ADS  Google Scholar 

  16. Petit, L., Eenink, H.G.J., Russ, M., et al.: Universal quantum logic in hot silicon qubits. Nature. 580, 355–359 (2020)

    Article  ADS  Google Scholar 

  17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge, U.K. (2000)

    MATH  Google Scholar 

  18. Merle, L., Delpoux, A., Mlayah, A., Grisolia, J.: Multiscale modeling of the dynamical conductivity of self-assembled nanoscale networks: numerical simulations vs anylitical models. J. Appl. Phys. 132, 015107 (2022). https://doi.org/10.1063/5.0097997

  19. Auth, C. et al.: A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. 2012 Symposium on VLSI Technology (VLSIT), 2012, pp. 131–132. https://doi.org/10.1109/VLSIT.2012.6242496

  20. Zajac, D. et al.: “Single electron spin qubits in silicon quantum dots,” Ph.D. dissertation, Princeton. http://arks.princeton.edu/ark:/88435/dsp01f4752k519

  21. Ansaloni, F., Chatterjee, A., Bohuslavskyi, H., Bertrand, B., Hutin, L., Vinet, M., Kuemmeth, F.: Single-electron operations in a foundry-fabricated array 20 of quantum dots. Nat. Commun. 11, 6399 (2020)

    Article  ADS  Google Scholar 

  22. Geck, L., Kruth, A., Bluhm, H., van Waasen, S., Heinen, S.: Control electronics for semiconductor spin qubits. Quantum Sci. Technol. 5, 015004 (2019)

    Article  ADS  Google Scholar 

  23. Pla, J.J., et al.: A single-atom electron spin qubit in silicon. Nature. 489(7417), 541–545 (2012)

    Article  ADS  Google Scholar 

  24. Veldhorst, M., et al.: Spin-orbit coupling and operation of multivelly spin qubits. Phys. Rev. B. 92(20), 201401 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research work is supported by University Grants Commission, Government of India in the form of Junior Research Fellowship (MANF-2018-19-JAM-98591).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farooq A. Khanday.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, H.A., Malik, G.F.A. & Khanday, F.A. Design and Modelling of Silicon Quantum Dot Based Single Qubit Spin Quantum Gates. Int J Theor Phys 61, 258 (2022). https://doi.org/10.1007/s10773-022-05239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05239-y

Keywords

Navigation