Skip to main content
Log in

Physical modeling of electron mobility enhancement for arbitrarily strained silicon

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The band structure of Silicon under arbitrary stress/strain conditions has been calculated using the empirical non-local pseudopotential method. It is shown that the change of the electron effective mass cannot be neglected for general stress conditions and how this effect together with the strain induced splitting of the conduction bands can be used to optimize the electron mobility. The effective mass change has been incorporated into our Monte Carlo simulator VMC and an existing low-field mobility model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson, S.-E. et al.: IEEE Trans. Electron Devices 51, 1790 (2004)

    Article  Google Scholar 

  2. Horstmann, M. et al.: In: Proc. Intl. Electron Devices Meeting, pp. 233–236 (2005)

  3. Jan, C.-H. et al.: In: Proc. Intl. Electron Devices Meeting, pp. 60–63 (2005)

  4. Uchida, K. et al.: In: Proc. Intl. Electron Devices Meeting, pp. 229–232 (2004)

  5. Irie, H. et al.: In: Proc. Intl. Electron Devices Meeting, pp. 225–228 (2004)

  6. Uchida, K. et al.: In: Proc. Intl. Electron Devices Meeting, pp. 135–138 (2005)

  7. Herring, C., Vogt, E.: Phys. Rev. 101, 944 (1956)

    Article  MATH  Google Scholar 

  8. Chelikowsky, J.R. Cohen, M.L.: Phys. Rev. B 14, 556 (1976)

    Article  Google Scholar 

  9. Rieger, M.M. Vogl, P.: Phys. Rev. B 48, 14276 (1993)

    Article  Google Scholar 

  10. Van de Walle, C.G., Martin, R.M.: Phys. Rev. B 34, 5621 (1986)

    Article  Google Scholar 

  11. Fischetti, M.V., Laux, S.E.: J. Appl. Phys. 80, 2234 (1996)

    Article  Google Scholar 

  12. Hinckley, J., Singh, J.: Phys. Rev. B 42, 3546 (1990)

    Article  Google Scholar 

  13. Friedel, P., et al.: Phys. Rev. B 39, 7974 (1989)

    Article  Google Scholar 

  14. Kleinman, L.: Phys. Rev. 128, 2614 (1962)

    Article  Google Scholar 

  15. Nielsen, O., Martin, R.: Phys. Rev. B 32, 3792 (1985)

    Article  Google Scholar 

  16. http://www.iue.tuwien.ac.at/software, VMC 2.0 User’s Guide, Institut für Mikroelektronik, Technische Universität Wien, Austria (2006)

  17. Dhar, S., et al.: IEEE Trans. Electron Devices 52, 527 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Ungersboeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungersboeck, E., Dhar, S., Karlowatz, G. et al. Physical modeling of electron mobility enhancement for arbitrarily strained silicon. J Comput Electron 6, 55–58 (2007). https://doi.org/10.1007/s10825-006-0047-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-006-0047-0

Keywords

Navigation