Skip to main content
Log in

An empirical approach to measure unobserved cultural relations using music trade data

  • Original Article
  • Published:
Journal of Cultural Economics Aims and scope Submit manuscript

Abstract

Cultural relations between countries influence the exchange of cultural goods. This study provides novel knowledge of unobserved cultural relations by mea- suring the effect of cultural relations on the trade in recorded music compact discs, using the gravity model of international trade. We consider such relations as unob- served heterogeneity and introduce into the standard model a factor structure (multi- ple interactive fixed effect terms) to extract the features of unobserved relations, in- cluding cultural relations, between trading countries. We also consider the existence of multiple zero-trade country pairs and introduce a selectivity structure to account for zero flows. After the estimation procedure, we derive the implications of cultural relations from the estimated values of interactive terms using multivariate analysis. From the results of post-estimation analysis, the estimated values of our interactive terms could be interpreted as the effect of cultural relations. In addition to the positive effect of cultural proximity on trade, which existing studies have revealed, our inter- active terms could capture (i) the negative effect of cultural proximity on music trade, such as home consumption bias, (ii) the positive effect of modern music consumption trend on music trade, which is unexplained by cultural proximity based on traditional cultural studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See also Jinji and Tanaka (2020) for an analysis of cultural goods trade in terms of cultural diversity.

  2. Santos Silva and Tenreyro (2015) provide several remarks on the inference procedure.

  3. The data are from the United Nations Commodity Trade Statistics Database (http://comtrade.un.org/).

  4. Source: International Monetary Fund (http://www.imf.org/external/index.htm).

  5. We estimated the joint model to avoid selection bias. In our sample, only 18.2%(=6328/34782) country pairs are in the trade. This is a typical situation with frequent zero trade flows. If we drop country pairs not in trade from our sample or treat their trade flow as zero, the estimated parameters become biased.

  6. The normality assumption can be extended to the distribution with fat tails and/or skewness (e.g., Chen et al. (2014)) at the cost of computational simplicity.

  7. Theoretically, economic scale is explained by additive fixed effect terms. In the “Appendix”, we confirm that the estimated values of additive terms are proportional to the economic scale.

  8. Country lists that show the countries in each group are given in the “Appendix”.

  9. There are several ways to use the country classification results from cluster analyses: applying the k-means method to each equation and classifying countries’ effects based on each result, or applying the k-means method only to the selection equation and classifying countries based on the result. However, a unified classification rule to both equations simplifies the interpretations. That is the reason we apply the country classification rules from the outcome equation to both equations.

  10. In Fig. 4, we treat values as zero if the trade path is not active.

  11. Source: Department of Statistics Singapore (https://www.singstat.gov.sg).

  12. Ruud (1991) proposes another estimation scheme via EM algorithm for the standard sample selection model. The proposed estimation procedure here is an extension of the expectation conditional maximization (ECM) algorithm proposed by Chen (2016) for the Probit model with interactive fixed effect terms.

References

  • Ahn, S. C., & Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

    Article  Google Scholar 

  • Anderson, J. E. (2011). The gravity model. Annual Review of Economics, 3(1), 133–160.

    Article  Google Scholar 

  • Arellano, M., & Hahn, J. (2016). A likelihood-based approximate solution to the incidental parameter problem in dynamic nonlinear models with multiple effects. Global Economic Review, 45(3), 251–274.

    Article  Google Scholar 

  • Arthur, D., & Vassilvitskii, S. (2007) K-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms SODA ’07 (pp 1027–1035), Philadelphia, PA, USA: Society for Industrial and Applied Mathematics.

  • Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica, 77(4), 1229–1279.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221.

    Article  Google Scholar 

  • Bai, J., & Wang, P. (2016). Econometric analysis of large factor models. Annual Review of Economics, 8(1), 53–80.

    Article  Google Scholar 

  • Belloc, M., & Bowles, S. (2017). Persistence and change in culture and institutions under autarchy, trade, and factor mobility. American Economic Journal: Microeconomics, 9(4), 245–76.

    Google Scholar 

  • Bisin, A., & Verdier, T. (2014). Trade and cultural diversity. Handbook of the Economics of Art and Culture, 2, 439–484.

    Article  Google Scholar 

  • Cameron, A. C. & Miller, D. L. (2014) Robust inference for dyadic data. Available at http://cameron.econ.ucdavis.edu/research/dyadic_cameron_miller_december2014_with_tables.pdf.

  • Cameron, A. C., & Miller, D. L. (2015). A practitioner’s guide to cluster-robust inference. Journal Human Resources, 50(2), 317–372.

    Article  Google Scholar 

  • Chen, H., Fan, Y., & Wu, J. (2014). A flexible parametric approach for estimating switching regime models and treatment effect parameters. Journal of Econometrics, 181(2), 77–91.

    Article  Google Scholar 

  • Chen, M. (2016). Estimation of Nonlinear Panel Models with Multiple Unobserved Effects, The Warwick Economics Research Paper Series No. 1120.

  • Choi, I., & Jeong, H. (2018). Model selection for factor analysis: Some new criteria and performance comparisons. Econometric Reviews, 0, 1–20.

  • Deloumeaux, L. (2018) Persisting imbalances in the flow of cultural goods and services. In Reshaping Cultural Policies (pp. 124–141), United Nations.

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). “Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society (Series B (Methodological)), 39(1), 1–38.

    Article  Google Scholar 

  • Disdier, A. C., Tai, S. H. T., Fontagné, L., & Mayer, T. (2010). Bilateral trade of cultural goods. Review of World Economics (Weltwirtschaftliches Archiv), 145(4), 575–595.

    Google Scholar 

  • Felbermayr, G. J., & Toubal, F. (2010). Cultural proximity and trade. European Economic Review, 54(2), 279–293.

    Article  Google Scholar 

  • Fernández-Val, I., & Weidner, M. (2018). Fixed effects estimation of large-T panel data models. Annual Review of Economics, 10(1), 109–138.

    Article  Google Scholar 

  • Ferreira, F., & Waldfogel, J. (2013). Pop internationalism: Has half a century of world music trade displaced local culture? The Economic Journal, 123(569), 634–664.

    Article  Google Scholar 

  • Giuliano, P., Spilimbergo, A., & Tonon, G. (2014). Genetic distance, transportation costs, and trade. Journal of Economic Geography, 14(1), 179–198.

    Article  Google Scholar 

  • Gobillon, L., & Magnac, T. (2016). Regional policy evaluation: Interactive fixed effects and synthetic controls. The Review of Economics and Statistics, 98(3), 535–551.

    Article  Google Scholar 

  • Hahn, J., & Kuersteiner, G. (2002). Asymptotically unbiased inference for a dynamic panel model with fixed effects when both n and T are large. Econometrica, 70(4), 1639–1657.

    Article  Google Scholar 

  • Head, K., & Mayer, T. (2014). Chapter 3—gravity equations: Workhorse, toolkit, and cookbook. In G. Gopinath, H. Helpman, & K. Rogoff (Eds.), Handbook of International Economics (Vol. 4, pp. 131–195). Amsterdam: Elsevier.

    Google Scholar 

  • Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 47(1), 153–161.

    Article  Google Scholar 

  • Helpman, E., Melitz, M., & Rubinstein, Y. (2008). Estimating trade flows: Trading partners and trading volumes. The Quarterly Journal of Economics, 123(2), 441–487.

    Article  Google Scholar 

  • Helpman, E., & Krugman, P. R. (1985). Market Structure and Foreign Trade: Increasing Returns, Imperfect Competition, and the International Economy. Cambridge MA: The MIT Press.

    Google Scholar 

  • Huntington, S.P. (1996) The Clash of Civilizations and The Remaking of the World Order, West Garden Place Kendal Street London W2 2AQ: Simon & Schuster Ltd.

  • Jinji, N., & Tanaka, A. (2020). How does UNESCO’s convention on cultural diversity affect trade in cultural goods? Journal of Cultural Economics, 44(4), 625–660.

    Article  Google Scholar 

  • Katz-Gerro, Tally, Raz, Sharon, & Yaish, Meir. (2009). How do class, status, ethnicity, and religiosity shape cultural omnivorousness in Israel? Journal of Cultural Economics, 33(1), 1–17.

    Article  Google Scholar 

  • Kristjansdottir, H., Gudlaugsson, T. O., Gudmundsdottir, S., & Adalsteinsson, G. D. (2017). Hofstede national culture and international trade. Applied Economics, 49(57), 5792–5801.

    Article  Google Scholar 

  • Lomax, A. (1959). Folk song style. American Anthropologist, 61(6), 927–954.

    Article  Google Scholar 

  • Lu, X., & Su, L. (2016). Shrinkage estimation of dynamic panel data models with interactive fixed effects. Journal of Econometrics, 190(1), 148–175.

    Article  Google Scholar 

  • Marvasti, A. (1994). International trade in cultural goods: A cross-sectional analysis. Journal of Cultural Economics, 18(2), 135–148.

    Article  Google Scholar 

  • McLachlan, G. J., & Krishnan, T. (2008). The EM algorithm and extensions (2nd ed.). Wiley series in probability and statistics: Wiley.

  • Melitz, J. (2008). Language and foreign trade. European Economic Review, 52(4), 667–699.

    Article  Google Scholar 

  • Meng, X.-L., & Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80(2), 267–278.

    Article  Google Scholar 

  • Ruud, P. A. (1991). Extensions of estimation methods using the EM algorithm. Journal of Econometrics, 49(3), 305–341.

    Article  Google Scholar 

  • Santos Silva, J. M. C., & Tenreyro, S. (2015). Trading partners and trading volumes: Implementing the Helpman–Melitz–Rubinstein model empirically. Oxford Bulletin of Economics and Statistics, 77(1), 93–105.

    Article  Google Scholar 

  • Shi, W., & Lee, L.-F. (2017). Spatial dynamic panel data models with interactive fixed effects. Journal of Econometrics, 197(2), 323–347.

    Article  Google Scholar 

  • Shin, S. Y., & McKenzie, J. (2019). Asymmetric cultural discounting and pattern of trade in cultural products: Empirical evidence in motion pictures. The World Economy, 42(11), 3350–3367.

    Article  Google Scholar 

  • Tadesse, B., & White, R. (2010). Does cultural distance hinder trade in goods? A comparative study of nine OECD member nations. Open Economies Review, 21(2), 237–261.

    Article  Google Scholar 

  • Takara, Y. (2018). Do cultural differences affect the trade of cultural goods? A study in trade of music. Journal of Cultural Economics, 42(3), 393–417.

    Article  Google Scholar 

  • Throsby, D. (1999). Cultural capital. Journal of Cultural Economics, 23(1), 3–12.

    Article  Google Scholar 

  • Towse, R. (2017). Economics of music publishing: Copyright and the market. Journal of Cultural Economics, 41(4), 403–420.

    Article  Google Scholar 

  • UNESCO. (2001). UNESCO Universal Declaration on Cultural Diversity. Paris: UNESCO.

  • UNESCO (2009) The 2009 UNESCO Framework for Cultural Statistics (FCS): UNESCO Institute for Statistics.

Download references

Acknowledgements

We acknowledge the participants at the 12th Workshop of Empirical Moral Science 2018, the 20th International Conference on Cultural Economics, the 13th Workshop of Empirical Moral Science 2019, the 5th Asian Workshop on Cultural Economics, and the Japan Association for Cultural Economics Summer Meeting 2019 for providing helpful suggestions and insightful comments on this paper. We would also like to offer our special thanks to kind editors and anonymous referees.

Funding

This study was funded by JSPS KAKENHI Grant Number JP18K01603. Conflict of Interest: The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Takara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Interpretation of additive fixed effect parameters

Base on their theoretical setting, Helpman et al. (2008) derive the empirical gravity model with exporter- and importer-specific additive fixed effects, and the economic status of each country in terms of GDP, population, price level and other (possibly unobserved) country-specific trade frictions are incorporated into this model. These factors are assumed to be country-specific and independent of trading partners. Figures 6, 7, 8 and 9 show the choropleth maps where countries are differentiated based on the additive fixed effect estimates from the outcome and the selection equation. \(\alpha _{y,i}\) (\(\alpha _{d,i}\)) is the fixed effect parameter of the i-th as an importer in the outcome equation (the selection equation), and \(\gamma _{y,j}\) (\(\gamma _{d,j}\)) is the fixed effect parameter of the j-th as an exporter in the outcome equation (the selection equation). Darker red colors indicate larger estimate values.

In these maps, the additive fixed estimates seem to be proportional to their economic scale. This tendency is shared by both estimates of exporter- and importer-specific fixed effect parameters in both equations. These findings are consistent with the theoretical implications concerning the additive fixed effect parameters obtained in Helpman et al. (2008). Some country-specific, partner-independent factors, such as economic scale, are important determinants but non-identifiable determinants of trade in gravity models when we only use the dyadic, cross-sectional dataset. It is true that the additive fixed effects can control for these factors, but other factors remain that are not accounted for by the explanatory variables and the additive fixed effects in the gravity equation. Then, those factors could be interpreted as unobserved, heterogeneous institutional relations or cultural relations between the importing and exporting country.

Fig. 6
figure 6

Values of \(\alpha _{y,i}\) on the World Map

Fig. 7
figure 7

Values of \(\gamma _{y,j}\) on the World Map

Fig. 8
figure 8

Values of \(\alpha _{d,i}\) on the World Map

Fig. 9
figure 9

Values of \(\gamma _{d,j}\) on the World Map

1.2 Country list by importing/exporting groups

The lists of importing/exporting groups are in Tables 12 and 13.

Table 12 Country List by Importing Groups (\({\mathscr {A}}\;_{y,i}\))
Table 13 Country List by Exporting Groups (\({\mathscr {G}}_{y,j}\))

1.3 Estimation procedure

Denote the structural parameters (the coefficient vectors in (1) and (2), the variance and the correlation coefficient parameter) as \({\theta }'=(\varvec{\beta }',\varvec{\delta }',\sigma ,\rho )\) and the incidental parameters (the additive and interactive fixed effect parameters) as

$$\begin{aligned} \underbrace{\;\;\varvec{\pi }'_{ij}\;\;}_{1\times 2(2+2r)}=(\underbrace{\;\;\varvec{a}'_{i}\;\;}_{1\times (2+2r)},\underbrace{\;\;\varvec{g}'_{j}\;\;}_{1\times (2+2r)}),\; i = 1, 2, \ldots , N,\; j = 1, 2, \ldots , N, j\ne i. \end{aligned}$$
(8)

where

$$\begin{aligned} \varvec{a}'_{i}= & {} (\varvec{a}'_{y,i},\varvec{a}'_{d,i}) =(\underbrace{\alpha _{y,i}, {\mathscr {A}}\;_{y,i} }_{1+r}, \underbrace{\alpha _{d,y}, {\mathscr {A}}\;_{d,i} }_{1+r})\\ \varvec{g}_{j}^{'}= & {} (\varvec{g}'_{y,j},\varvec{g}'_{d,t}) =(\underbrace{\gamma _{y,t}, {\mathscr {G}}_{y,t} }_{1+r}, \underbrace{\gamma _{d,y}, {\mathscr {G}}_{d,t} }_{1+r}). \end{aligned}$$

For identification, we employ the same restrictions as Bai (2009):

$$\begin{aligned} \sum _{i=1}^{N}\alpha _{y,i} = \sum _{i=1}^{N}\alpha _{d,i} = \sum _{j=1}^{N}\gamma _{y,j} = \sum _{j=1}^{N}\gamma _{d,j} = 0, ~~ \sum _{i=1}^{N} {\mathscr {A}}\;'_{y,i} = \sum _{i=1}^{N}{\mathscr {A}}\;'_{d,i} = \sum _{j=1}^{N}{\mathscr {G}}'_{y,j} = \sum _{j=1}^{N}{\mathscr {G}}'_{d,j} = \underbrace{\varvec{0}}_{r\times 1}, \end{aligned}$$
$$\begin{aligned} {\mathscr {A}}\;'_{y}{\mathscr {A}}\;_{y} = {\mathscr {A}}\;'_{d}{\mathscr {A}}\;_{d} = \varvec{I}_{r},\; \underbrace{{\mathscr {A}}\;'_{y}}_{r\times N} = ({\mathscr {A}}\;'_{y,1}, {\mathscr {A}}\;'_{y,2}, \ldots , {\mathscr {A}}\;'_{y,N}),\; \underbrace{{\mathscr {A}}\;'_{d}}_{r\times N} = ({\mathscr {A}}\;'_{d,1}, {\mathscr {A}}\;'_{d,2}, \ldots , {\mathscr {A}}\;'_{d,N}) \end{aligned}$$
$$\begin{aligned} {\mathscr {G}}'_{y}{\mathscr {G}}_{y} = \varvec{\varLambda }_{y},\; {\mathscr {G}}'_{d}{\mathscr {G}}_{d} = \varvec{\varLambda }_{d}, \; \underbrace{{\mathscr {G}}'_{y}}_{r\times N} = ({\mathscr {G}}'_{y,1}, {\mathscr {G}}'_{y,2}, \ldots , {\mathscr {G}}'_{y,N}),\; \underbrace{{\mathscr {G}}'_{d}}_{r\times N} = ({\mathscr {G}}'_{d,1}, {\mathscr {G}}'_{d,2}, \ldots , {\mathscr {G}}'_{d,N}),\; \end{aligned}$$

where \(\varvec{I}_{r}\) is the \(r\times r\) identity matrix, and \(\varvec{\varLambda }_{y}\) and \(\varvec{\varLambda }_{d}\) are \(r\times r\) diagonal matrices.

We employ an expectation-maximization (EM) algorithm (e.g., Dempster et al. (1977)) to obtain the maximum likelihood estimate of the unknown parameters in (1), (2), (3), and (4). The procedure follows two steps: expectation (the conditional expectation of the complete likelihood function given the observations, E-step) and maximization (the maximization of the expected likelihood with respect to unknown parameters, M-step). The actual procedure to obtain the maximum likelihood estimator (MLE) by the EM algorithm is as followsFootnote 12:

E-step::

Given the initial values of the parameters {\(\varvec{\beta }^{(s)}\), \(\varvec{a}_{y}^{(s)},\varvec{g}_{y}^{(s)}\)}, {\(\varvec{\delta }^{(s)}\), \(\varvec{a}_{d}^{(s)},\varvec{g}_{d}^{(s)}\)}, \(\rho ^{(s)}\), \(\sigma ^{(s)}\), define the conditional means and variances of the latent dependent variables, \(y_{ij}^{*}\) and \(d_{ij}^{*}\),

$$\begin{aligned} \mathbb {E}_{y_{ij}^{*} | d=0}[y_{ij}^{*}],\; \mathbb {E}_{d_{ij}^{*} | y_{ij}, d_{ij}=1}[d_{ij}^{*}],\;\mathbb {E}_{d_{ij}^{*} | d_{ij}=0}[d_{ij}^{*}],\; \mathbb {V}_{y_{ij}^{*} | d_{ij}=0}[y_{ij}^{*}],\;\mathbb {V}_{d_{ij}^{*} | y_{ij}, d_{ij}=1}[d_{ij}^{*}],\; \text{ and }\;\mathbb {V}_{d_{ij}^{*} | d_{ij}=0}[ d_{ij}^{*} ] \end{aligned}$$

and define

$$\begin{aligned} \tilde{y}_{ij}= & {} d_{ij}\cdot y_{ij}+(1-d_{ij})\cdot \mathbb {E}_{y_{ij}^{*} | d_{ij}=0}[y_{ij}^{*}]\\ \tilde{d}_{ij}= & {} d_{ij}\cdot \mathbb {E}_{d_{ij}^{*} | y_{ij}, d_{ij}=1}[d_{ij}^{*}] +(1-d_{ij})\cdot \mathbb {E}_{d_{ij}^{*} | d_{ij}=0}[d_{ij}^{*}] \end{aligned}$$
M-step::

This step uses three conditional maximization sub-steps (e.g., Meng and Rubin (1993); McLachlan and Krishnan (2008)):

1.:

Given {\(\varvec{\beta }^{(s)}\), \(\varvec{a}_{y}^{(s)}, \varvec{g}_{y}^{(s)}\)},{\(\varvec{\delta }^{(s)}\), \(\varvec{a}_{d}^{(s)}, \varvec{g}_{d}^{(s)}\)}, \(\rho ^{(s)}\), \(\sigma ^{(s)}\), define

$$\begin{aligned} \hat{\tilde{y}}_{ij}^{(s)}\equiv \tilde{y}_{ij}^{(s)} - \rho ^{(s)}\sigma ^{(s)}(\tilde{d}_{ij}^{(s)}-\mathbf {z}'_{ij}\varvec{\delta }^{(s)}-\alpha _{d,i}^{(s)}-\gamma _{d,j}^{(s)}-{\mathscr {A}}\;_{d,i}^{(s)}({\mathscr {G}}_{d,j}^{(s)})').\end{aligned}$$

Then, update {\(\varvec{\beta }\),\(\varvec{a}_{y},\varvec{g}_{y}\)} by the minimizer of the following criterion function:

$$\begin{aligned} (\varvec{\beta }^{(s+1)}, \varvec{a}_{y}^{(s+1)}, \varvec{g}_{y}^{(s+1)}) =\arg \min _{\varvec{\beta }, \varvec{a}_{y}, \varvec{g}_{y}} \sum _{i=1}^{N}\sum _{j=1}^{N} \left( \hat{\tilde{y}}_{ij}^{(s)}-\mathbf {x}'_{ij}\varvec{\beta }-\alpha _{y,i}-\gamma _{y,j}-{\mathscr {A}}\;_{y,i}{\mathscr {G}}'_{y,j} \right) ^{2}. \end{aligned}$$
2.:

Given {\(\varvec{\beta }^{(s+1)}\),\(\varvec{a}_{y}^{(s+1)},\varvec{g}_{y}^{(s+1)}\)}, {\(\varvec{\delta }^{(s)}\),\(\varvec{a}_{d}^{(s)},\varvec{g}_{d}^{(s)}\)}, \(\rho ^{(s)}\),\(\sigma ^{(s)}\), define

$$\begin{aligned}\hat{\tilde{d}}_{ij}^{(s)}\equiv \tilde{d}_{ij}^{(s)} - \frac{\rho ^{(s)}}{\sigma ^{(s)}}(\tilde{y}_{ij}^{(s)}-\mathbf {x}'_{ij}\varvec{\beta }^{(s+1)}-\alpha _{y,i}^{(s)}-\gamma _{y,j}^{(s)}-{\mathscr {A}}\;_{y,i}^{(s)}({\mathscr {G}}_{y,j}^{(s)})'). \end{aligned}$$

Then, update {\(\varvec{\delta }^{(s)}\),\(\varvec{a}_{d}^{(s)},\varvec{g}_{d}^{(s)}\)} by the minimizer of the following criterion function:

$$\begin{aligned} (\varvec{\delta }^{(s+1)},\varvec{a}_{d}^{(s+1)},\varvec{g}_{d}^{(s+1)}) =\arg \min _{\varvec{\delta },\varvec{a}_{d},\varvec{g}_{d}} \sum _{i=1}^{N}\sum _{j=1}^{N} \left( \hat{\tilde{d}}_{ij}^{(s)}-\mathbf {z}'_{ij}\varvec{\delta }-\alpha _{d,i}-\gamma _{d,j}-{\mathscr {A}}\;_{d,i}{\mathscr {G}}'_{d,j} \right) ^{2}. \end{aligned}$$
3.:

Given {\(\varvec{\beta }^{(s+1)}\),\(\varvec{a}_{y}^{(s+1)},\varvec{g}_{y}^{(s+1)}\)},{\(\varvec{\delta }^{(s+1)}\),\(\varvec{a}_{d}^{(s+1)},\varvec{g}_{d}^{(s+1)}\)},\(\rho ^{(s)}\),\(\sigma ^{(s)}\), update \(\rho\) and \(\sigma\) by

$$\begin{aligned} \sigma ^{(s+1)}= & {} \left( T_{yy}^{(s)}+\frac{(T_{yd}^{(s)})^{2}}{T_{dd}^{(s)}}\cdot (1-T_{dd}^{(s)})\right) ^{1/2},\;\; \rho ^{(s+1)}=\frac{1}{\sigma ^{(s+1)}}\cdot \frac{T_{yd}^{(s)}}{T_{dd}^{(s)}} \end{aligned}$$

where (\(\pi _{y,ij}\equiv \alpha _{y,i}-\gamma _{y,j}-{\mathscr {A}}\;_{y,i}{\mathscr {G}}'_{y,j}\), \(\pi _{d,ij}\equiv \alpha _{d,i}-\gamma _{d,j}-{\mathscr {A}}\;_{d,i}{\mathscr {G}}'_{d,j}\)), and

$$\begin{aligned} T_{yy}^{(s)}= & {} \frac{1}{N(N-1)}\sum _{i=1}^{N}\sum _{j=1,j\ne i}^{N} \left\{ (\tilde{y}_{ij}^{(s)}-\mathbf {x}'_{ij}\varvec{\beta }^{(s+1)}-\pi _{y,ij}^{(s+1)})^{2} + (1-d_{ij})\cdot \mathbb {V}_{y^{*}|d=0}^{(s)}[y_{ij}^{*}]\right\} \\ T_{yd}^{(s)}= & {} \frac{1}{N(N-1)}\sum _{i=1}^{N}\sum _{j=1,j\ne i}^{N} \left\{ (\tilde{y}_{ij}^{(s)}-\mathbf {x}'_{ij}\varvec{\beta }^{(s+1)}-\pi _{y,ij}^{(s+1)}) (\tilde{d}_{ij}^{(s)}-\mathbf {z}'_{ij}\varvec{\delta }^{(s+1)}-\pi _{d,ij}^{(s+1)})\right. \\&+\left. (1-d_{ij})\cdot \rho ^{(s)}\sigma ^{(s)}\cdot \mathbb {V}_{d^{*}|d=0}^{(s)}[d_{ij}^{*}]\right\} \\ T_{dd}^{(s)}= & {} \frac{1}{N(N-1)}\sum _{i=1}^{N}\sum _{j=1,j\ne i}^{N} \left\{ (\tilde{d}_{ij}^{(s)}-\mathbf {z}'_{ij}\varvec{\delta }^{(s+1)}-\pi _{d,ij}^{(s+1)})^{2} \right. \\& \left. +d_{ij}\cdot \mathbb {V}_{d^{*}|y,d=1}^{(s)}[d_{ij}^{*}]+(1-d_{ij}) \cdot \mathbb {V}_{d^{*}|d=0}^{(s)}[d_{ij}^{*}]\right\} \end{aligned}$$

The procedure proposed here is easy to implement: the minimization problems in the first two conditional maximization sub-steps can be solved in the same way as Bai (2009), and the third sub-step has closed-form solutions.

The asymptotic distribution of the MLE has a non-zero mean vector since we are facing the situation where the sample sizes of exporting countries and importing countries simultaneously go to infinity at the same rate. The asymptotic properties of the bias-corrected estimator can be derived along the same lines as Hahn and Kuersteiner (2002), Arellano and Hahn (2016), and Fernández-Val and Weidner (2018): the bias-corrected estimator is defined as:

$$\begin{aligned} \tilde{\varvec{\theta }}=\hat{\varvec{\theta }}- \mathbf {b}_{N}-\mathbf {d}_{N} \end{aligned}$$

where \(\hat{\varvec{\theta }}\) is the MLE, and \(\mathbf {b}_{N}\) and \(\mathbf {d}_{N}\) are bias correction terms defined in (10) and (11) in the Appendix. The asymptotic distribution of the estimator is given as follows:

$$\begin{aligned} \sqrt{N(N-1)}\left( \tilde{\varvec{\theta }}-\varvec{\theta }_{0}\right) {\mathop {\longrightarrow }\limits ^{d}} N(\mathbf {0},\;\mathscr {W}_{NN}^{-1}\varPsi _{NN}\mathscr {W}_{NN}^{-1})\end{aligned}$$

1.4 Conditional expectation of the latent variables

The conditional means and variances of the latent variables, \(y_{ij}^*\) and \(d_{ij}^*\), given observations, \(y_{ij}\) and \(d_{ij}=1\), or \(d_{ij}=0\) are,

$$\begin{aligned} \mathbb {E}_{y^{*}_{ij}|d_{ij}=0}[y_{ij}^{*}]= &\, {} \mathbf {x}'_{ij}\varvec{\beta }+\pi _{y,ij}-\rho \sigma _{u}\cdot \frac{\phi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }{1-\varPhi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }\\ \mathbb {E}_{d_{ij}^{*}|y_{ij},d_{ij}=1}[d_{ij}^{*}]= & \,{} (1-\rho ^{2})^{1/2}\cdot \left\{ \frac{\eta _{ij}}{(1-\rho ^{2})^{1/2}}+\frac{\phi \left( \frac{\eta _{ij}}{(1-\rho ^{2})^{1/2}}\right) }{\varPhi \left( \frac{\eta _{ij}}{(1-\rho ^{2})^{1/2}}\right) }\right\} \\ \mathbb {E}_{d^{*}_{ij}|d_{ij}=0}[d_{ij}^{*}]= & \,{} \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij} -\frac{\phi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }{1-\varPhi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }\\ \end{aligned}$$

where \(\pi _{y,ij}\equiv \alpha _{y,i}-\gamma _{y,j}-{\mathscr {A}}\;_{y,i}{\mathscr {G}}'_{y,j}\), \(\pi _{d,ij}\equiv \alpha _{d,i}-\gamma _{d,j}-{\mathscr {A}}\;_{d,i}{\mathscr {G}}'_{d,j}\), and

$$\begin{aligned} \mathbb {V}_{y^{*}_{ij}|d_{ij}=0}[y_{ij}^{*}]= & {} \sigma _{u}^{2}\left\{ 1+\rho ^{2}\frac{\phi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }{1-\varPhi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }\left\{ \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}-\frac{\phi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }{1-\varPhi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }\right\} \right\} \\ \mathbb {V}_{d^{*}_{ij}|y_{ij},d_{ij}=1}[d_{ij}^{*}]= & {} (1-\rho ^{2}) \cdot \left\{ 1-\frac{\phi \left( \frac{\eta _{ij}}{(1-\rho ^{2})^{1/2}}\right) }{\varPhi \left( \frac{\eta _{ij}}{(1-\rho ^{2})^{1/2}}\right) }\left( \frac{\eta _{ij}}{(1-\rho ^{2})^{1/2}} +\frac{\phi \left( \frac{\eta _{ij}}{(1-\rho ^{2})^{1/2}}\right) }{\varPhi \left( \frac{\eta _{ij}}{(1-\rho ^{2})^{1/2}}\right) }\right) \right\} \\ \mathbb {V}_{d^{*}_{ij}|d_{ij}=0}[d_{i}^{*}]= & {} 1+\frac{\phi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }{1-\varPhi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }\left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij} -\frac{\phi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }{1-\varPhi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }\right) \\ \text{ cov }(y^{*}_{ij},d^{*}_{ij})= & {} \rho \sigma _{u}\left\{ 1+\frac{\phi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }{1-\varPhi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) } \cdot \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij} -\frac{\phi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }{1-\varPhi \left( \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}\right) }\right) \right\} \\= & {} \rho \sigma _{u}\cdot \mathbb {V}_{d^{*}_{ij}|d=0}[d_{ij}^{*}] \end{aligned}$$

where

$$\begin{aligned}\eta _{ij} = \mathbf {z}'_{ij}\varvec{\gamma }+\pi _{d,ij}+\rho \cdot \frac{y_{ij}^{*}-\mathbf {x}'_{ij}\varvec{\beta }-\pi _{y,ij}}{\sigma _{u}}.\end{aligned}$$

1.5 Asymptotic properties of the bias-corrected estimator

Denote

$$\begin{aligned} \mu _{y,ij} \equiv \mathbf {x}'_{ij}\varvec{\beta } +\alpha _{y,i}+\gamma _{y,j}+{\mathscr {A}}\;'_{y,i}{\mathscr {G}}_{y,j} \equiv \mathbf {x}'_{ij}\varvec{\beta } + \pi _{y,ij}, \end{aligned}$$

and

$$\begin{aligned} \mu _{d,ij} \equiv \mathbf {z}'_{ij}\varvec{\delta } +\alpha _{d,i}+\gamma _{d,j}+{\mathscr {A}}\;'_{d,i}{\mathscr {G}}_{d,j} \equiv \mathbf {z}'_{ij}\varvec{\delta } + \pi _{d,ij}. \end{aligned}$$

The likelihood function of the sample \(\{\;\{\; y_{ij},d_{ij}\; \}_{j=1, j\ne i}^{N}\; \}_{i=1}^{N}\) is

$$\begin{aligned} \log L(\varvec{\theta },\varvec{a}_{y},\varvec{g}_{y},\varvec{a}_{d},\varvec{g}_{d}) = \sum _{i=1}^{N}\sum _{j=1, j\ne i}^{N} \ell _{ij}(\varvec{\theta },\varvec{a}_{y,i},\varvec{g}_{y,j},\varvec{a}_{d,i},\varvec{g}_{d,j}) \end{aligned}$$

where \(\ell _{ij}\) is the log-likelihood contribution of the (ij)-th observation:

$$\begin{aligned} \ell _{ij} = d_{ij}\cdot \log \frac{1}{\sigma } \phi \left( \frac{y_{ij}-\mu _{y,ij}}{\sigma }\right) + d_{ij}\cdot \log \varPhi \left( \frac{ \mu _{z,ij} + \rho \cdot (y_{ij}-\mu _{y,ij})/\sigma }{ (1-\rho ^2)^{1/2} } \right) + (1-d_{ij})\cdot \log \varPhi \left( \mu _{z,ij} \right) , \end{aligned}$$

The parameter vectors are summarized into the following vectors,

$$\begin{aligned}\varvec{a}_{d,i}\equiv ( \alpha _{d,i}, {\mathscr {A}}\;_{d,i})',\; \varvec{a}_{y,i} \equiv ( \alpha _{y,i}, {\mathscr {A}}\;_{y,i} )',\; \varvec{g}_{d,i} \equiv (\gamma _{d,j}, {\mathscr {G}}_{d,j} )',\; \varvec{g}_{y,i} \equiv (\gamma _{y,j}, {\mathscr {G}}_{y,j} )',\end{aligned}$$

and

$$\begin{aligned} \varvec{a}_{i} \equiv (\varvec{a}'_{d,i},\varvec{a}'_{y,i})',\; \varvec{g}_{j} \equiv (\varvec{g}'_{d,i},\varvec{g}'_{y,i})', \varvec{\theta }\equiv (\varvec{\beta }', \varvec{\delta }', \sigma _{u}, \rho )'. \end{aligned}$$

The bias-corrected estimator of \(\varvec{\theta }\) is asymptotically regarded as the solution of the following corrected score function (Fernández-Val and Weidner (2018) and Arellano and Hahn (2016)),

$$\begin{aligned} \frac{1}{N(N-1)}\sum _{i=1}^{N}\sum _{j=1,j\ne i}^{N} \varvec{\psi }_{ij} (\varvec{\theta }) \equiv \frac{1}{N(N-1)}\sum _{i=1}^{N}\sum _{j=1,j\ne i}^{N} \left( \frac{\partial \ell _{ij}}{\partial \varvec{\theta }}+\varXi '_{i\bullet }\frac{\partial \ell _{ij} }{ \partial \varvec{a}_{i}}+\varXi '_{\bullet j}\frac{\partial \ell _{ij}}{\partial \varvec{g}_{j}} \right) = \mathbf {0}, \end{aligned}$$
(9)

where the incidental parameters, \(\varvec{a}_{i}\) and \(\varvec{g}_{j}\), are evaluated at a given value of \(\varvec{\theta }\) in the maximization process, and

$$\begin{aligned} \underbrace{\;\;\varXi _{i\bullet }\;\;}_{(2+2r)\times K}= & {} \mathop {\mathrm {plim}}_{N\rightarrow \infty }\left( - \sum _{j=1,j\ne i}^{N} \frac{\partial ^{2}\ell _{ij} }{ \partial \varvec{a}_{i}\partial \varvec{a}'_{i}} \right) ^{-1}\left( \sum _{j=1,j\ne i}^{N}\frac{\partial ^{2}\ell _{ij} }{ \partial \varvec{a}_{i}\partial \varvec{\theta }'} \right) \\ \underbrace{\;\;\varXi _{\bullet j}\;\;}_{(2+2r)\times K}= & {} \mathop {\mathrm {plim}}_{N\rightarrow \infty } \left( - \sum _{i=1, i \ne j}^{N}\frac{\partial ^{2}\ell _{ij} }{ \partial \varvec{g}_{j}\partial \varvec{g}'_{j}} \right) ^{-1}\left( \sum _{i=1, i \ne j}^{N}\frac{\partial ^{2}\ell _{ij} }{ \partial \varvec{g}_{j}\partial \varvec{\theta }'} \right) \end{aligned}$$

are terms which make the log-likelihood function informationally orthogonal between \(\varvec{\theta }\) and the incidental parameters, \(\varvec{a}_{i}\) and \(\varvec{g}_{j}\). See Section 4.2 of Fernández-Val and Weidner (2018).

The asymptotic variance and the analytical expression of the bias correction term are analogously derived as Example 10 in Fernández-Val and Weidner (2018). The asymptotic variance of the bias-corrected estimator is given as \(\mathscr {W}_{NN}^{-1}\varPsi _{NN}\mathscr {W}_{NN}^{-1}\) where

$$\begin{aligned} \varPsi _{NN}= & {} \frac{1}{N(N-1)}\sum _{i=1}^{N}\sum _{j=1,j\ne i}^{N} \left( \frac{\partial \ell _{ij}}{\partial \varvec{\theta }}+\varXi '_{N,i\bullet }\frac{\partial \ell _{ij} }{ \partial \varvec{a}_{i}}+\varXi '_{N,\bullet j}\frac{\partial \ell _{ij}}{\partial \varvec{g}_{j}} \right) \cdot \left( \frac{\partial \ell _{ij}}{\partial \varvec{\theta }}+\varXi '_{N,i\bullet }\frac{\partial \ell _{ij} }{ \partial \varvec{a}_{i}}+\varXi '_{N,\bullet j}\frac{\partial \ell _{ij}}{\partial \varvec{g}_{j}} \right) ' \\ \mathscr {W}_{NN}= & {} \frac{1}{N(N-1)}\sum _{i=1}^{N}\sum _{j=1,j\ne i}^{N} \left\{ \frac{ \partial ^{2}\ell _{ij} }{ \partial \varvec{\theta } \partial \varvec{\theta }' } +\varXi '_{N, i \bullet } \frac{\partial ^{2}\ell _{ij} }{ \partial \varvec{a}_{i}\partial \varvec{a}'_{i}}\varXi _{N,i \bullet } +\varXi '_{N,\bullet j}\frac{\partial ^{2}\ell _{ij}}{ \partial \varvec{g}_{j}\partial \varvec{g}'_{j}}\varXi _{N,\bullet j}\right\} . \end{aligned}$$

where \(\varXi _{N,i\bullet }\) and \(\varXi _{N,\bullet j}\) are sample analogs of \(\varXi _{i\bullet }\) and \(\varXi _{\bullet j}\), respectively. According to the formula in page 129 in Fernández-Val and Weidner (2018), the k-th element of the bias correction terms are derived as follows (note that we use the following abbreviations, \(\sum _{j\ne i}^{N}\) and \(\sum _{i\ne j}^{N}\) for \(\sum _{j=1, j \ne i}^{N}\) and \(\sum _{i=1, i \ne j}^{N}\), respectively),

$$\begin{aligned}b_{k,N} &= -\frac{1}{N}\sum _{i=1}^{N}\text{ trace }\left[ \left( \sum _{j \ne i}^{N}\frac{\partial ^{2}\ell _{ij} }{ \partial \varvec{a}_{i}\partial \varvec{a}'_{i}} \right) ^{-1}\left( \sum _{j \ne i}^{N}\frac{\partial \ell _{ij}}{\partial \varvec{a}_{i}}\frac{\partial \varvec{\psi }_{k,ij} }{ \partial \varvec{a}'_{i}} \right) \right]\\&\quad +\frac{1}{2N}\sum _{i=1}^{N}\text{ trace }\Biggl [ \left( \sum _{j \ne i}^{N}\frac{\partial ^{2}\varvec{\psi }_{k,ij} }{ \partial \varvec{a}_{i}\partial \varvec{a}'_{i}} \right) \left( \sum _{j \ne i}^{N}\frac{\partial ^{2}\ell _{ij} }{ \partial \varvec{a}_{i}\partial \varvec{a}'_{i}} \right) ^{-1}\left( \sum _{j \ne i}^{N}\frac{\partial \ell _{ij} }{ \partial \varvec{a}_{i} } \frac{\partial \ell _{ij}}{\partial \varvec{a}'_{i}} \right) \left( \sum _{j \ne i}^{N}\frac{\partial ^{2}\ell _{ij} }{ \partial \varvec{a}_{i}\partial \varvec{a}'_{i}} \right) ^{-1}\Biggl ] \end{aligned}$$
(10)
$$\begin{aligned}d_{k,N} &= -\frac{1}{N}\sum _{j=1}^{N}\text{ trace }\left[ \left( \sum _{i \ne j}^{N}\frac{\partial ^{2}\ell _{ij} }{ \partial \varvec{g}_{j}\partial \varvec{g}'_{j}} \right) ^{-1}\left( \sum _{i \ne j}^{N}\frac{\partial \ell _{ij}}{\partial \varvec{g}_{j}} \frac{\partial \varvec{\psi }_{k,ij}}{\partial \varvec{g}'_{j}} \right) \right] \\&\quad+\frac{1}{2N}\sum _{j=1}^{N}\text{ trace }\Biggl [\left( \sum _{i \ne j}^{N}\frac{\partial \varvec{\psi }_{k,ij} }{ \partial \varvec{g}_{j}\partial \varvec{g}'_{j}} \right) \left( \sum _{i \ne j}^{N}\frac{\partial ^{2}\ell _{ij} }{ \partial \varvec{g}_{j}\partial \varvec{g}'_{j} } \right) ^{-1}\left( \sum _{i \ne j}^{N}\frac{\partial \ell _{ij}}{\partial \varvec{g}_{j}} \frac{\partial \ell _{ij}}{\partial \varvec{g}'_{j} } \right) \left( \sum _{i \ne j}^{N} \frac{\partial ^{2}\ell _{ij} }{\partial \varvec{g}_{j}\partial \varvec{g}'_{j}} \right) ^{-1} \Biggl ] \nonumber \\ & \quad k= {} 1,2,\ldots ,K. \end{aligned}$$
(11)

where \(\varvec{\psi }_{k,ij}\) is the k-th element of \(\varvec{\psi }_{ij}\) defined in (9). The partial derivatives in these formula are given as follows (\(\eta _{ij}\equiv \mu _{d,ij}-\rho (y_{ij}-\mu _{yij})/\sigma\), \(\zeta _{ij}\equiv \mu _{d,ij}\)),

$$\begin{aligned} \underbrace{\;\; \frac{\partial \ell _{ij}}{\partial \varvec{a}_{i}}\;\;}_{(2+2r)\times 1}= & {} \left( \begin{array}{c} d_{ij} \cdot \frac{1}{\sigma }\cdot \left\{ \frac{y_{ij}-\mu _{y,ij}}{\sigma }-\lambda \left( \eta _{ij}\right) \cdot \frac{\rho }{(1-\rho ^{2})^{1/2}}\right\} \cdot \left( \begin{array}{c} 1\\ {\mathscr {G}}_{y,j}\\ \end{array}\right) \\ \left\{ d_{ij}\cdot \lambda \left( \eta _{ij}\right) \cdot \frac{1}{(1-\rho ^{2})^{1/2}}-(1-d_{ij})\cdot \lambda \left( -\zeta _{ij}\right) \right\} \cdot \left( \begin{array}{c} 1\\ {\mathscr {G}}_{d,j}\\ \end{array}\right) \end{array}\right) \\ \underbrace{\;\;\frac{\partial ^{2}\ell _{ij}}{ \partial \varvec{a}_{i}\partial \varvec{a}'_{i}}\;\;}_{(2+2r)\times (2+2r)}= & {} \left( \begin{array}{cc} \left\{ -1-\cdot \frac{\rho ^{2}\cdot \xi _{+}\left( \eta _{ij}\right) }{1-\rho ^{2}}\right\} \cdot \frac{d_{ij}}{\sigma ^{2}} \cdot \varDelta _{yy,j}^{{\mathscr {G}}} &{} \frac{\rho \cdot \xi _{+}\left( \eta _{ij}\right) }{1-\rho ^{2}}\cdot \frac{d_{ij}}{\sigma }\cdot \varDelta _{yd,j}^{{\mathscr {G}}} \\ \frac{\rho \cdot \xi _{+}\left( \eta _{ij}\right) }{1-\rho ^{2}}\cdot \frac{d_{ij}}{\sigma }\cdot \varDelta _{dy,j}^{{\mathscr {G}}} &{} -\left\{ \frac{d_{it}\cdot \xi _{+}\left( \eta _{ij}\right) }{1-\rho ^{2}}-(1-d_{ij})\cdot \xi _{-}\left( \zeta _{ij}\right) \right\} \varDelta _{dd,j}^{{\mathscr {G}}} \end{array}\right) , \\ \frac{\partial \ell _{ij}}{\partial \varvec{g}_{j}}= & {} \left( \begin{array}{c} d_{ij}\cdot \frac{1}{\sigma }\cdot \left\{ \frac{y_{ij}-\mu _{y,ij}}{\sigma }-\lambda \left( \eta _{ij}\right) \cdot \frac{\rho }{(1-\rho ^{2})^{1/2}}\right\} \cdot \left( \begin{array}{c} 1\\ {\mathscr {A}}\;_{y,i}\\ \end{array}\right) \\ \left\{ d_{ij}\cdot \lambda \left( \eta _{ij}\right) \cdot \frac{1}{(1-\rho ^{2})^{1/2}} -(1-d_{ij})\cdot \lambda \left( -\zeta _{ij}\right) \right\} \cdot \left( \begin{array}{c} 1\\ {\mathscr {A}}\;_{d,i}\\ \end{array}\right) \end{array}\right) \\ \frac{\partial ^{2}\ell _{ij}}{\partial \varvec{g}_{j}\partial \varvec{g}'_{j}}= & {} \left( \begin{array}{cc} \left\{ -1-\frac{\rho ^{2}\cdot \xi _{+}\left( \eta _{ij}\right) }{1-\rho ^{2}}\right\} \cdot \frac{d_{ij}}{\sigma ^{2}}\cdot \varDelta _{yy,i}^{{\mathscr {A}}\;} &{} \xi _{+}\left( \eta _{ij}\right) \cdot \frac{\rho }{1-\rho ^{2}}\cdot \frac{d_{ij}}{\sigma }\cdot \varDelta _{yy,i}^{{\mathscr {A}}\;} \\ \frac{\rho \cdot \xi _{+}\left( \eta _{ij}\right) }{1-\rho ^{2}}\cdot \frac{d_{ij}}{\sigma }\cdot \varDelta _{dy,i}^{{\mathscr {A}}\;} &{} -\left\{ d_{ij}\cdot \frac{\xi _{+}\left( \eta _{ij}\right) }{1-\rho ^{2}}-(1-d_{ij})\cdot \xi _{-}\left( \zeta _{ij}\right) \right\} \varDelta _{dd,i}^{{\mathscr {A}}\;} \end{array}\right) \end{aligned}$$

where \(\varDelta ^{{\mathscr {G}}}_{uv,j}=\left( \begin{array}{c} 1\\ {\mathscr {G}}_{u,j} \end{array}\right) \left( \begin{array}{c} 1\\ {\mathscr {G}}_{v,j} \end{array}\right)^\prime\) and \(\varDelta ^{\mathscr {A}}\;_{uv,i}=\left( \begin{array}{c} 1\\ {\mathscr {A}}\;_{u,i} \end{array}\right) \left( \begin{array}{c} 1\\ {\mathscr {A}}\;_{v,i} \end{array}\right)^\prime\), \(u,v = y,d\), and

$$\begin{aligned} \lambda \left( \eta _{ij}\right) =\frac{\phi (\eta _{ij})}{\varPhi (\eta _{ij})},\, \xi _{+}\left( \eta _{ij}\right) =\lambda \left( \eta _{ij}\right) \left\{ \eta _{ij}+\lambda \left( \eta _{ij}\right) \right\} ,\, \xi _{-}\left( \zeta _{ij}\right) =\lambda \left( -\zeta _{ij}\right) \left\{ \zeta _{ij}-\lambda \left( -\zeta _{ij}\right) \right\} . \end{aligned}$$

Other partial derivatives, \(\frac{\partial ^{3}{\ell}_{ij}}{\partial \theta _{k}\partial \varvec{a}_{i}\partial \varvec{a}^\prime_{i}}\), \(\frac{\partial ^{2}{\ell}_{ij}}{\partial \theta _{k}\partial \varvec{a}^\prime_{i}}\), \(\frac{\partial ^{2}{\ell}_{ij}}{\partial \theta _{k}\partial \varvec{g}^\prime_{j}}\), and\(\frac{\partial^{3}{\ell}_{ij}}{\partial \theta _{k}\partial \varvec{g}_{j}\partial \varvec{g}^\prime_{j}}\) are also derived in a similar way.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takara, Y., Takagi, S. An empirical approach to measure unobserved cultural relations using music trade data. J Cult Econ 47, 205–245 (2023). https://doi.org/10.1007/s10824-022-09455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10824-022-09455-6

Keywords

JEL Classification

Navigation