Skip to main content
Log in

In silico identification of noncompetitive inhibitors targeting an uncharacterized allosteric site of falcipain-2

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Falcipain-2 (FP-2) is a Plasmodium falciparum hemoglobinase widely targeted in the search for antimalarials. FP-2 can be allosterically modulated by various noncompetitive inhibitors that have been serendipitously identified. Moreover, the crystal structures of two inhibitors bound to an allosteric site, termed site 6, of the homolog enzyme human cathepsin K (hCatK) suggest that the equivalent region in FP-2 might play a similar role. Here, we conduct the rational identification of FP-2 inhibitors through virtual screenings (VS) of compounds into several pocket-like conformations of site 6, sampled during molecular dynamics (MD) simulations of the free enzyme. Two noncompetitive inhibitors, ZINC03225317 and ZINC72290660, were confirmed using in vitro enzymatic assays and their poses into site 6 led to calculated binding free energies matching the experimental ones. Our results provide strong evidence about the allosteric inhibition of FP-2 through binding of small molecules to site 6, thus opening the way toward the discovery of new inhibitors against this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

MOE, Amber14, Amber18, and Gaussian 09 are commercial software. Autodock-Vina, Gromacs and Avogadro are freely available on the internet.

References

  1. Wells TN, Hooft van Huijsduijnen R, Van Voorhis WC (2015) Nat Rev Drug Discov 14:424–442. https://doi.org/10.1038/nrd4573

    Article  PubMed  CAS  Google Scholar 

  2. World Malaria Report (2021) https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020. Accessed 27 Mar 2021

  3. Bekono BD, Ntie-Kang F, Owono Owono LC et al (2018). Curr Drug Target. https://doi.org/10.2174/1389450117666161221122432

    Article  Google Scholar 

  4. Teixeira C, Gomes JR, Gomes P (2011) Curr Med Chem 18:1555–1572. https://doi.org/10.2174/092986711795328328

    Article  PubMed  CAS  Google Scholar 

  5. Ettari R, Bova F, Zappala M et al (2010) Med Res Rev 30:136–167. https://doi.org/10.1002/med.20163

    Article  PubMed  CAS  Google Scholar 

  6. Roy KK (2017) Int J Antimicrob Agents 50:287–302. https://doi.org/10.1016/j.ijantimicag.2017.04.006

    Article  PubMed  CAS  Google Scholar 

  7. Rosenthal PJ (2011) Adv Exp Med Biol 712:30–48. https://doi.org/10.1007/978-1-4419-8414-2_3

    Article  PubMed  CAS  Google Scholar 

  8. Wagner JR, Lee CT, Durrant JD et al (2016) Chem Rev 116:6370–6390. https://doi.org/10.1021/acs.chemrev.5b00631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bhat AS, Dustin Schaeffer R, Kinch L et al (2020) Curr Opin Struct Biol 62:183–188. https://doi.org/10.1016/j.sbi.2020.02.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bertoldo JB, Chiaradia-Delatorre LD, Mascarello A et al (2015) J Enzyme Inhib Med Chem 30:299–307. https://doi.org/10.3109/14756366.2014.920839

    Article  PubMed  CAS  Google Scholar 

  11. Alberca LN, Chuguransky SR, Alvarez CL et al (2019) Front Chem 7:534. https://doi.org/10.3389/fchem.2019.00534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Marques AF, Esser D, Rosenthal PJ et al (2013) Bioorg Med Chem 21:3667–3673. https://doi.org/10.1016/j.bmc.2013.04.047

    Article  PubMed  CAS  Google Scholar 

  13. Marques AF, Gomes PS, Oliveira PL et al (2015) Arch Biochem Biophys 573:92–99. https://doi.org/10.1016/j.abb.2015.03.007

    Article  PubMed  CAS  Google Scholar 

  14. Pant A, Kumar R, Wani NA et al (2018) Sci Rep 8:16193. https://doi.org/10.1038/s41598-018-34564-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hernandez Gonzalez JE, Hernandez Alvarez L, Pascutti PG et al (2019) J Phys Chem B 123:7327–7342. https://doi.org/10.1021/acs.jpcb.9b05021

    Article  PubMed  CAS  Google Scholar 

  16. Novinec M, Korenc M, Caflisch A et al (2014) Nat Commun 5:3287. https://doi.org/10.1038/ncomms4287

    Article  PubMed  CAS  Google Scholar 

  17. Novinec M, Lenarcic B, Baici A (2014) PLoS ONE 9:e106642. https://doi.org/10.1371/journal.pone.0106642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Novinec M, Rebernik M, Lenarcic B (2016) FEBS Lett 590:4507–4518. https://doi.org/10.1002/1873-3468.12495

    Article  PubMed  CAS  Google Scholar 

  19. Costa TF, dos Reis FC, Lima AP (2012) Biochim Biophys Acta 1824:493–501. https://doi.org/10.1016/j.bbapap.2011.12.006

    Article  PubMed  CAS  Google Scholar 

  20. Lima AP et al (2002) J Biol Chem 277:5875–5881. https://doi.org/10.1074/jbc.M108518200

    Article  PubMed  CAS  Google Scholar 

  21. Li Z, Kienetz M, Cherney MM et al (2008) J Mol Biol 383:78–91. https://doi.org/10.1016/j.jmb.2008.07.038

    Article  PubMed  CAS  Google Scholar 

  22. Li Z, Yasuda Y, Li W et al (2004) J Biol Chem 279:5470–5479. https://doi.org/10.1074/jbc.M310349200

    Article  PubMed  CAS  Google Scholar 

  23. Judice WA et al (2013) PLoS ONE 8:e80153. https://doi.org/10.1371/journal.pone.0080153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Almeida PC, Nantes IL, Chagas JR et al (2001) J Biol Chem 276:944–951. https://doi.org/10.1074/jbc.M003820200

    Article  PubMed  CAS  Google Scholar 

  25. Almeida PC, Nantes IL, Rizzi CC et al (1999) J Biol Chem 274:30433–30438. https://doi.org/10.1074/jbc.274.43.30433

    Article  PubMed  CAS  Google Scholar 

  26. Irwin JJ, Shoichet BK (2005) J Chem Inf Model 45:177–182. https://doi.org/10.1021/ci049714+

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hernandez Alvarez L, Barreto Gomes DE, Hernandez Gonzalez JE et al (2019) PLoS ONE 14:e0211227. https://doi.org/10.1371/journal.pone.0211227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Molecular Operating Environment (MOE) (2016) 2013.08 Chemical Computing Group Inc., Montreal

  29. Morris GM, Huey R, Lindstrom W et al (2009) J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Trott O, Olson AJ (2010) J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rastelli G, Del Rio A, Degliesposti G et al (2010) J Comput Chem 31:797–810. https://doi.org/10.1002/jcc.21372

    Article  PubMed  CAS  Google Scholar 

  32. Hou T, Wang J, Li Y et al (2011) J Chem Inf Model 51:69–82. https://doi.org/10.1021/ci100275a

    Article  PubMed  CAS  Google Scholar 

  33. Genheden S, Ryde U (2015) Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Rastelli G, Pinzi L (2019) Front Chem 7:498. https://doi.org/10.3389/fchem.2019.00498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Nguyen H, Roe DR, Simmerling C (2013) J Chem Theory Comput 9:2020–2034. https://doi.org/10.1021/ct3010485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Miller BR 3rd, McGee TD Jr, Swails JM et al (2012) J Chem Theory Comput 8:3314–3321. https://doi.org/10.1021/ct300418h

    Article  PubMed  CAS  Google Scholar 

  37. Case DA, Ben-Shalom IY, Brozell SR et al (2018) AMBER 2018. University of California, San Francisco

    Google Scholar 

  38. Case DA, Babin V, Berryman JT et al (2014) AMBER14. University of California, San Francisco

    Google Scholar 

  39. Wang J, Wolf RM, Caldwell JW et al (2004) J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  PubMed  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  41. Hanwell MD, Curtis DE, Lonie DC et al (2012) J Cheminform 4:17. https://doi.org/10.1186/1758-2946-4-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Rappe AK, Casewit CJ, Colwell KS et al (1992) J Am Chem Soc 114:10024–10035. https://doi.org/10.1021/ja00051a040

    Article  CAS  Google Scholar 

  43. Maier JA, Martinez C, Kasavajhala K et al (2015) J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hernandez Gonzalez JE, Hernandez Alvarez L, Pascutti PG et al (2017) Proteins 85:1666–1683. https://doi.org/10.1002/prot.25322

    Article  PubMed  CAS  Google Scholar 

  45. Reif MM, Hunenberger PH, Oostenbrink C (2012) J Chem Theory Comput 8:3705–3723. https://doi.org/10.1021/ct300156h

    Article  PubMed  CAS  Google Scholar 

  46. Abraham MJ, Murtola T, Schulz R et al (2015) SoftwareX 1:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  47. Hess B, Bekker H, Berendsen HJ et al (1997) J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  48. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  49. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101. https://doi.org/10.1063/1.2408420

    Article  PubMed  CAS  Google Scholar 

  50. Parrinello M, Rahman A (1981) J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  51. Aldeghi M, Heifetz A, Bodkin MJ et al (2016) Chem Sci 7:207–218. https://doi.org/10.1039/c5sc02678d

    Article  PubMed  CAS  Google Scholar 

  52. Hernandez Gonzalez JE, Hernandez Alvarez L, Leite VBP et al (2020) J Chem Inf Model 60:5499–5512. https://doi.org/10.1021/acs.jcim.0c00294

    Article  PubMed  CAS  Google Scholar 

  53. Klimovich PV, Shirts MR, Mobley DL (2015) J Comput Aided Mol Des 29:397–411. https://doi.org/10.1007/s10822-015-9840-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Boresch S, Tettinger F, Leitgeb M et al (2003) J Phys Chem B 107:9535–9551. https://doi.org/10.1021/jp0217839

    Article  CAS  Google Scholar 

  55. Case DA, Betz RM, Cerutti DS et al (2016) AMBER 2016. University of California, San Francisco

    Google Scholar 

  56. DeLano WL (2002) PyMOL. 2.1.0. DeLano Scientific, San Carlos

  57. Lerbret A, Mason PE, Venable RM et al (2009) Carbohydr Res 344:2229–2235. https://doi.org/10.1016/j.carres.2009.08.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sarduy ES, Munoz AC, Trejo SA et al (2012) Protein Expr Purif 83:59–69. https://doi.org/10.1016/j.pep.2012.03.008

    Article  PubMed  CAS  Google Scholar 

  59. Copeland RA (2013). In: Copeland RA (ed) Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. Wiley, Hoboken, pp 123–168

    Chapter  Google Scholar 

  60. Selwyn MJ (1965) Biochim Biophys Acta 105:193–195. https://doi.org/10.1016/S0926-6593(65)80190-4

    Article  PubMed  CAS  Google Scholar 

  61. One-way ANOVA followed by Dunnett’s multiple comparisons test was performed using GraphPad Prism version 5.03 for Windows, GraphPad Software: San Diego, California USA, www.graphpad.com

  62. (2004) Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda

  63. Copeland RA (2000). In: Copeland RA (ed) Enzymes: a practical introduction to structure, mechanism, and data analysis. Wiley, New York, pp 266–304

    Chapter  Google Scholar 

  64. Machin JM, Kantsadi AL, Vakonakis I (2019) Malar J 18:388. https://doi.org/10.1186/s12936-019-3043-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cournia Z, Allen B, Sherman W (2017) J Chem Inf Model 57:2911–2937. https://doi.org/10.1021/acs.jcim.7b00564

    Article  PubMed  CAS  Google Scholar 

  66. Jiang W (2019) J Chem Theory Comput 15:2179–2186. https://doi.org/10.1021/acs.jctc.8b01147

    Article  PubMed  CAS  Google Scholar 

  67. Vajda S, Beglov D, Wakefield AE et al (2018) Curr Opin Chem Biol 44:1–8. https://doi.org/10.1016/j.cbpa.2018.05.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nussinov R, Tsai CJ (2013) Cell 153:293–305. https://doi.org/10.1016/j.cell.2013.03.034

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

JEHG and CO gratefully acknowledge financial support in the context of an Ernst Mach Scholarship (OeAD), financed by the Austrian Federal Ministry for Education, Science and Research. JEHG and LHA thank the Sao Paulo Research Foundation (FAPESP), Grant Numbers 2016/24587–9, 2018/03911–8 and 2020/10214-1 for financial support. ESS is grateful to the National Research Council (CONICET, Argentina). VBPL was funded by VBPL was funded by FAPESP Grant 2019/22540–3 and 2016/19766–1, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). PGP thanks CNPq e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for general financial support (Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Enrique Hernández González.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9379 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández González, J.E., Salas-Sarduy, E., Hernández Alvarez, L. et al. In silico identification of noncompetitive inhibitors targeting an uncharacterized allosteric site of falcipain-2. J Comput Aided Mol Des 35, 1067–1079 (2021). https://doi.org/10.1007/s10822-021-00420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-021-00420-7

Keywords

Navigation