Lu R, Wang GG (2013) Tudor: a versatile family of histone methylation “readers.” Trends Biochem Sci 38(11):546–555. https://doi.org/10.1016/j.tibs.2013.08.002
CAS
Article
PubMed
Google Scholar
West LE, Roy S, Lachmi-Weiner K, Hayashi R, Shi X, Appella E, Kutateladze TG, Gozani O (2010) The MBT repeats of L3MBTL1 link SET8-mediated p53 methylation at lysine 382 to target gene repression. J Biol Chem 285(48):37725–37732. https://doi.org/10.1074/jbc.M110.139527
CAS
Article
PubMed
PubMed Central
Google Scholar
Metzger E, Willmann D, McMillan J, Forne I, Metzger P, Gerhardt S, Petroll K, von Maessenhausen A, Urban S, Schott AK, Espejo A, Eberlin A, Wohlwend D, Schule KM, Schleicher M, Perner S, Bedford MT, Jung M, Dengjel J, Flaig R, Imhof A, Einsle O, Schule R (2016) Assembly of methylated KDM1A and CHD1 drives androgen receptor-dependent transcription and translocation. Nat Struct Mol Biol 23(2):132–139. https://doi.org/10.1038/nsmb.3153
CAS
Article
PubMed
Google Scholar
Cornett EM, Ferry L, Defossez PA, Rothbart SB (2019) Lysine methylation regulators moonlighting outside the epigenome. Mol Cell 75(6):1092–1101. https://doi.org/10.1016/j.molcel.2019.08.026
CAS
Article
PubMed
PubMed Central
Google Scholar
Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28(10):1069–1078. https://doi.org/10.1038/nbt.1678
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang W, Chen Z, Mao Z, Zhang H, Ding X, Chen S, Zhang X, Xu R, Zhu B (2011) Nucleolar protein Spindlin1 recognizes H3K4 methylation and stimulates the expression of rRNA genes. EMBO Rep 12(11):1160–1166. https://doi.org/10.1038/embor.2011.184
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang N, Wang W, Wang Y, Wang M, Zhao Q, Rao Z, Zhu B, Xu RM (2012) Distinct mode of methylated lysine-4 of histone H3 recognition by tandem tudor-like domains of Spindlin1. Proc Natl Acad Sci USA 109(44):17954–17959. https://doi.org/10.1073/pnas.1208517109
Article
PubMed
PubMed Central
Google Scholar
Su X, Zhu G, Ding X, Lee SY, Dou Y, Zhu B, Wu W, Li H (2014) Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1. Genes Dev 28(6):622–636. https://doi.org/10.1101/gad.233239.113
CAS
Article
PubMed
PubMed Central
Google Scholar
Shanle EK, Shinsky SA, Bridgers JB, Bae N, Sagum C, Krajewski K, Rothbart SB, Bedford MT, Strahl BD (2017) Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions. Epigenet Chromatin 10:12. https://doi.org/10.1186/s13072-017-0117-5
CAS
Article
Google Scholar
Wang C, Zhan L, Wu M, Ma R, Yao J, Xiong Y, Pan Y, Guan S, Zhang X, Zang J (2018) Spindlin-1 recognizes methylations of K20 and R23 of histone H4 tail. FEBS Lett 592(24):4098–4110. https://doi.org/10.1002/1873-3468.13281
CAS
Article
PubMed
Google Scholar
Fagan V, Johansson C, Gileadi C, Monteiro O, Dunford JE, Nibhani R, Philpott M, Malzahn J, Wells G, Faram R, Cribbs AP, Halidi N, Li F, Chau I, Greschik H, Velupillai S, Allali-Hassani A, Bennett J, Christott T, Giroud C, Lewis AM, Huber KVM, Athanasou N, Bountra C, Jung M, Schule R, Vedadi M, Arrowsmith C, Xiong Y, Jin J, Fedorov O, Farnie G, Brennan PE, Oppermann U (2019) A chemical probe for tudor domain protein Spindlin1 to investigate chromatin function. J Med Chem 62(20):9008–9025. https://doi.org/10.1021/acs.jmedchem.9b00562
CAS
Article
PubMed
Google Scholar
Xiong Y, Greschik H, Johansson C, Seifert L, Bacher J, Park KS, Babault N, Martini M, Fagan V, Li F, Chau I, Christott T, Dilworth D, Barsyte-Lovejoy D, Vedadi M, Arrowsmith CH, Brennan P, Fedorov O, Jung M, Farnie G, Liu J, Oppermann U, Schule R, Jin J (2019) Discovery of a potent and selective fragment-like inhibitor of Methyllysine Reader Protein Spindlin 1 (SPIN1). J Med Chem 62(20):8996–9007. https://doi.org/10.1021/acs.jmedchem.9b00522
CAS
Article
PubMed
Google Scholar
Bae N, Viviano M, Su X, Lv J, Cheng D, Sagum C, Castellano S, Bai X, Johnson C, Khalil MI, Shen J, Chen K, Li H, Sbardella G, Bedford MT (2017) Developing Spindlin1 small-molecule inhibitors by using protein microarrays. Nat Chem Biol 13(7):750–756. https://doi.org/10.1038/nchembio.2377
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao F, Liu Y, Su X, Lee JE, Song Y, Wang D, Ge K, Gao J, Zhang MQ, Li H (2020) Molecular basis for histone H3 “K4me3-K9me3/2” methylation pattern readout by Spindlin1. J Biol Chem. https://doi.org/10.1074/jbc.RA120.013649
Article
PubMed
PubMed Central
Google Scholar
Jiang F, Zhao Q, Qin L, Pang H, Pei X, Rao Z (2006) Expression, purification, crystallization and preliminary X-ray analysis of human spindlin1, an ovarian cancer-related protein. Protein Pept Lett 13(2):203–205
CAS
Article
PubMed
Google Scholar
Chen X, Wang YW, Xing AY, Xiang S, Shi DB, Liu L, Li YX, Gao P (2016) Suppression of SPIN1-mediated PI3K-Akt pathway by miR-489 increases chemosensitivity in breast cancer. J Pathol 239(4):459–472. https://doi.org/10.1002/path.4743
CAS
Article
PubMed
Google Scholar
Drago-Ferrante R, Pentimalli F, Carlisi D, De Blasio A, Saliba C, Baldacchino S, Degaetano J, Debono J, Caruana-Dingli G, Grech G, Scerri C, Tesoriere G, Giordano A, Vento R, Di Fiore R (2017) Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation. Oncotarget 8(17):28939–28958. https://doi.org/10.18632/oncotarget.15960
Article
PubMed
PubMed Central
Google Scholar
Song Q, Ji Q, Xiao J, Li F, Wang L, Chen Y, Xu Y, Jiao S (2018) miR-409 inhibits human non-small-cell lung cancer progression by directly targeting SPIN1. Mol Ther Nucleic Acids 13:154–163. https://doi.org/10.1016/j.omtn.2018.08.020
CAS
Article
PubMed
PubMed Central
Google Scholar
Franz H, Greschik H, Willmann D, Ozretic L, Jilg CA, Wardelmann E, Jung M, Buettner R, Schule R (2015) The histone code reader SPIN1 controls RET signaling in liposarcoma. Oncotarget 6(7):4773–4789. https://doi.org/10.18632/oncotarget.3000
Article
PubMed
PubMed Central
Google Scholar
Zhao M, Bu Y, Feng J, Zhang H, Chen Y, Yang G, Liu Z, Yuan H, Yuan Y, Liu L, Yun H, Wang J, Zhang X (2020) SPIN1 triggers abnormal lipid metabolism and enhances tumor growth in liver cancer. Cancer Lett 470:54–63. https://doi.org/10.1016/j.canlet.2019.11.032
CAS
Article
PubMed
Google Scholar
Gao Y, Yue W, Zhang P, Li L, Xie X, Yuan H, Chen L, Liu D, Yan F, Pei X (2005) Spindlin1, a novel nuclear protein with a role in the transformation of NIH3T3 cells. Biochem Biophys Res Commun 335(2):343–350. https://doi.org/10.1016/j.bbrc.2005.07.087
CAS
Article
PubMed
Google Scholar
Zhang P, Cong B, Yuan H, Chen L, Lv Y, Bai C, Nan X, Shi S, Yue W, Pei X (2008) Overexpression of spindlin1 induces metaphase arrest and chromosomal instability. J Cell Physiol 217(2):400–408. https://doi.org/10.1002/jcp.21515
CAS
Article
PubMed
Google Scholar
Yuan H, Zhang P, Qin L, Chen L, Shi S, Lu Y, Yan F, Bai C, Nan X, Liu D, Li Y, Yue W, Pei X (2008) Overexpression of SPINDLIN1 induces cellular senescence, multinucleation and apoptosis. Gene 410(1):67–74. https://doi.org/10.1016/j.gene.2007.11.019
CAS
Article
PubMed
Google Scholar
Fang Z, Cao B, Liao JM, Deng J, Plummer KD, Liao P, Liu T, Zhang W, Zhang K, Li L, Margolin D, Zeng SX, Xiong J, Lu H (2018) SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein 18)-MDM2-p53 pathway in human cancer. Elife. https://doi.org/10.7554/eLife.31275
Article
PubMed
PubMed Central
Google Scholar
Janecki DM, Sajek M, Smialek MJ, Kotecki M, Ginter-Matuszewska B, Kuczynska B, Spik A, Kolanowski T, Kitazawa R, Kurpisz M, Jaruzelska J (2018) SPIN1 is a proto-oncogene and SPIN3 is a tumor suppressor in human seminoma. Oncotarget 9(65):32466–32477. https://doi.org/10.18632/oncotarget.25977
Article
PubMed
PubMed Central
Google Scholar
Sweis RF, Pliushchev M, Brown PJ, Guo J, Li F, Maag D, Petros AM, Soni NB, Tse C, Vedadi M, Michaelides MR, Chiang GG, Pappano WN (2014) Discovery and development of potent and selective inhibitors of histone methyltransferase g9a. ACS Med Chem Lett 5(2):205–209. https://doi.org/10.1021/ml400496h
CAS
Article
PubMed
PubMed Central
Google Scholar
Wagner T, Greschik H, Burgahn T, Schmidtkunz K, Schott AK, McMillan J, Baranauskiene L, Xiong Y, Fedorov O, Jin J, Oppermann U, Matulis D, Schule R, Jung M (2016) Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform. Nucleic Acids Res 44(9):e88. https://doi.org/10.1093/nar/gkw089
CAS
Article
PubMed
PubMed Central
Google Scholar
Robaa D, Wagner T, Luise C, Carlino L, McMillan J, Flaig R, Schule R, Jung M, Sippl W (2016) Identification and structure-activity relationship studies of small-molecule inhibitors of the Methyllysine Reader Protein Spindlin1. ChemMedChem 11(20):2327–2338. https://doi.org/10.1002/cmdc.201600362
CAS
Article
PubMed
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235
CAS
Article
PubMed
PubMed Central
Google Scholar
Dai Y, Zhang A, Shan S, Gong Z, Zhou Z (2018) Structural basis for recognition of 53BP1 tandem Tudor domain by TIRR. Nat Commun 9(1):2123. https://doi.org/10.1038/s41467-018-04557-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu J, Zhang S, Liu M, Liu Y, Nshogoza G, Gao J, Ma R, Yang Y, Wu J, Zhang J, Li F, Ruan K (2018) Structural plasticity of the TDRD3 Tudor domain probed by a fragment screening hit. FEBS J 285(11):2091–2103. https://doi.org/10.1111/febs.14469
CAS
Article
PubMed
Google Scholar
Ren C, Morohashi K, Plotnikov AN, Jakoncic J, Smith SG, Li J, Zeng L, Rodriguez Y, Stojanoff V, Walsh M, Zhou MM (2015) Small-molecule modulators of methyl-lysine binding for the CBX7 chromodomain. Chem Biol 22(2):161–168. https://doi.org/10.1016/j.chembiol.2014.11.021
CAS
Article
PubMed
PubMed Central
Google Scholar
Li J, Moumbock AFA, Gunther S (2020) Exploring cocrystallized aromatic cage binders to target histone methylation reader proteins. J Chem Inf Model 60(10):5225–5233. https://doi.org/10.1021/acs.jcim.0c00765
CAS
Article
PubMed
Google Scholar
Zhao Q, Qin L, Jiang F, Wu B, Yue W, Xu F, Rong Z, Yuan H, Xie X, Gao Y, Bai C, Bartlam M, Pei X, Rao Z (2007) Structure of human spindlin1. Tandem tudor-like domains for cell cycle regulation. J Biol Chem 282(1):647–656. doi:https://doi.org/10.1074/jbc.M604029200
Schrödinger Release 2018-1: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2018. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2018
Schrödinger Release 2018-1: Induced Fit Docking protocol; Glide, Schrödinger, LLC, New York, NY, 2018; Prime, Schrödinger, LLC, New York, NY, 2018
Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49(2):534–553. https://doi.org/10.1021/jm050540c
CAS
Article
PubMed
Google Scholar
Schrödinger Release 2017-1: Glide, Schrödinger, LLC, New York, NY, 2017
Lin JH, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124(20):5632–5633. https://doi.org/10.1021/ja0260162
CAS
Article
PubMed
Google Scholar
Wong CF, Kua J, Zhang Y, Straatsma TP, McCammon JA (2005) Molecular docking of balanol to dynamics snapshots of protein kinase A. Proteins 61(4):850–858. https://doi.org/10.1002/prot.20688
CAS
Article
PubMed
Google Scholar
Ivetac A, McCammon JA (2011) Molecular recognition in the case of flexible targets. Curr Pharm Des 17(17):1663–1671. https://doi.org/10.2174/138161211796355056
CAS
Article
PubMed
PubMed Central
Google Scholar
Tarcsay A, Paragi G, Vass M, Jojart B, Bogar F, Keseru GM (2013) The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs. J Chem Inf Model 53(11):2990–2999. https://doi.org/10.1021/ci400087b
CAS
Article
PubMed
Google Scholar
Tian S, Sun H, Pan P, Li D, Zhen X, Li Y, Hou T (2014) Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility. J Chem Inf Model 54(10):2664–2679. https://doi.org/10.1021/ci500414b
CAS
Article
PubMed
Google Scholar
Schrödinger Release 2018-1: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2018
Schrödinger Release 2018–1: Maestro, Schrödinger, LLC, New York, NY, 2018
Schrödinger Release 2018-1: LigPrep, Schrödinger, LLC, New York, NY, 2018
Schrödinger Release 2018-1: ConfGen, Schrödinger, LLC, New York, NY, 2018
Watts KS, Dalal P, Murphy RB, Sherman W, Friesner RA, Shelley JC (2010) ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50(4):534–546. https://doi.org/10.1021/ci100015j
CAS
Article
PubMed
Google Scholar